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Abstract 

ERPs (Event-Related Potentials) have become a widely-used measure to study second language (L2) 

processing. To study individual differences, traditionally a component outcome measure is calculated 

pre-specified time window of the ERP 

waveform in different conditions (e.g., the Response Magnitude Index ; Tanner, Mclaughlin, 

Herschensohn & Osterhout, 2013). This approach suffers from the problem that the definition of such 

time windows is rather arbitrary, and that the result is sensitive to outliers as well as participant variation 

in latency. The latter is particularly problematic for studies on L2 processing. Furthermore, the size of 

the ERP response (i.e., amplitude difference) of an L2 speaker may not be the best indicator of near-

native proficiency, as native speakers also show a great deal of variability in this respect, with the 

i.e., how consistently they show an amplitude difference) 

potentially being a more useful indicator. In this paper we introduce a novel method for the extraction 

of a set of individual difference measures from ERP waveforms

complete waveforms for a given time series, modelled using generalized additive modelling (GAM; 

Wood, 2017). From our modelled waveform, we extract a set of measures which are based on amplitude, 

area and peak effects. We illustrate the benefits of our method compared to the traditional Response 
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Magnitude Index with data on the processing of grammatical gender violations in 66 Slavic L2 speakers 

of German and 29 German native speakers. One of our measures in particular appears to outperform the 

others in characterizing differences between native speakers and L2 speakers, and captures proficiency 

differences between L2 speakers: Normalized Modelled P . This measure reflects the height of 

the (modelled) peak, normalized against the uncertainty of the modelled signal, here in the P600 search 

window. This measure may be seen as a measure of peak robustness, that is, how reliable the individual 

is able to show a P600 effect, largely independently of where in the P600 window this occurs. We 

discuss implications of our results and offer suggestions for future studies on L2 processing. The code 

to implement these analyses is available for other researchers.  
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1. Introduction 

Second language (L2) learning is subject to substantial individual variation. However, traditional Event-

Related Potential (ERP) studies on L2 learning are often restricted to group comparisons of the grand 

mean waveforms of L2 speakers versus native speakers. This approach stems from methodological 

considerations, since ERPs have to be averaged over both trials and individuals in order to achieve 

adequate signal-to-noise ratio. In recent years, however, there has been increasing interest in individual 

differences in neurocognitive aspects of L2 processing. While this change of direction in the field in 

itself is positive, it brings with it some methodological challenges and concerns. Here, we present a 

method to extract a reliable individual measure from the ERP signal that is better able to deal with 

individual differences than the traditional measure. 

 

1.1 ERPs in L2 processing and individual differences 

ERPs are derived from the electroencephalogram (EEG) and offer a powerful tool to investigate online 

language processing (see Luck, 2014, for an introduction to ERPs). Their fine-grained temporal 

resolution allows the investigation of real-time language processing, and thus insights into similarities 

and differences between languages acquired from birth in (monolingual) native speakers and languages 

acquired later in life (L2s) (see Steinhauer, 2014, and Morgan-Short, 2014, for overviews of ERP 

research on L2 acquisition).  

The current paper introduces a methodology allowing for the analysis of individual differences 

in language processing as investigated through the ERP method in order to gain further insight into 

similarity or difference between native and advanced L2 processing. For the purpose of this study, we 

focus on a particular ERP component, namely the P600, which is a large positive-going ERP wave with 

a maximum around 600 ms post stimulus onset commonly and robustly observed in response to 

grammatical violations,1 but the procedure we propose is equally suitable for other (language-related) 

ERP components, such as the N400 or the LAN (see Payne, Ng, Shantz & Federmeier, 2020, for a 

                                                 
1  It is not the purpose of this paper to contribute to the discussion on the precise nature of the linguistic processes 

indexed by the P600, as recently referenced, for example, in Leckey & Federmeier (2019) or Sassenhagen & 
Fiebach (2019).   
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review of the ERP components that are central in the study of multilingual language processing). Current 

theories of the P600 interpret its functional significance as reflecting a process of revision, reanalysis or 

integration difficulty (e.g., Brouwer, Crocker, Venhuizen & Hoeks, 2017; Kaan & Swaab, 2003; Kos, 

Vosse, Van Den Brink & Hagoort, 2010). A modulation of this component in L2 speakers, compared to 

native speakers, may inform us about differences in linguistic processing between the two groups. Our 

focus here is on how to brain response to 

grammatical violations, which will allow better insight into individual differences between L2 speakers.  

Most ERP research in the field of L2 grammar processing has been conducted using group 

comparisons (e.g., L2 speakers vs. native speakers, low proficiency vs. high proficiency L2 speakers, or 

early vs. late onset L2 speakers), in which participant variability is treated as a source of noise (e.g., in 

the error term in an ANOVA model). ERPs are used to investigate to what extent a particular group of 

L2 speakers can acquire new grammatical features, i.e., whether they are able to show the same 

neurocognitive response to manipulations of these features as native speakers do, and under which 

circumstances they show quantitative and/or qualitative deviations from the native norm (e.g., Alemán 

Bañón, Fiorentino, & Gabriele, 2018; Carrasco-Ortíz, Herrera, Jackson-Maldonado, Ramírez, Pereyra 

& Wicha, 2017; Foucart & Frenck-Mestre, 2012; Meulman, Stowe, Sprenger, Bresser, & Schmid, 2014; 

Morgan-Short, Sanz, Steinhauer, & Ullman, 2010). The finding of a less 

pronounced/delayed/absent/different ERP effect is then taken to reflect weaker/slower/different 

neurocognitive mechanisms or neural processing, for example because the syntactic structure under 

investigation is not fully acquired (yet), or stored differently in the language system of the L2 speaker 

compared to that of a native speaker. 

More recently, other studies have opted to make individual differences in this respect the subject 

of their investigation (e.g., Alemán Bañón, Miller, & Rothman, 2017; Bice & Kroll, 2021; Bond, 

Gabriele, Fiorentino, & Alemán Bañón, 2011; Grey, 2022; Grey, Tanner & van Hell, 2017; Kim, Oines 

& Miyake, 2018; Tanner, Inoue, & Osterhout, 2014; Tanner, Mclaughlin, Herschensohn, & Osterhout, 

2013; Tanner, Goldshtein & Weissman, 2018; Tanner & van Hell, 2014; Tanner, 2019). These studies 

demonstrate the robust impact of a broad range of individual factors on both semantic and syntactic 

processing, as measured by ERPs. Individual variability exists in both monolingual and bilingual 
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populations (Beatty Martínez, Bruni, Bajo & Dussias, 2021; Tanner, Goldshtein & Weissman, 2018), 

with ERP responses modulated by general factors such as working memory span and handedness, but it 

is compounded in bilingual populations by the impact of L2-specific factors such as age of acquisition 

and proficiency. As a result, ERP outcomes presented in grand mean average waveforms and the 

accompanying omnibus statistical analyses of mean amplitudes may present one picture, but closer 

inspection of between-participant variation reveals another. For example, group grand averages have 

sometimes found biphasic patterns, suggesting the presence of two separate ERP components, but 

subsequent analysis reveals that in fact subsets of individuals exhibit only one of the components (see 

Tanner, Goldshtein & Weissman, 2018 for discussion). This is particularly relevant for investigations 

comprising L2 speakers at different stages of proficiency, where the biphasic pattern comprising both 

an N400 and a P600 may be due to the fact that the lower proficiency L2 speakers tend to exhibit the 

former in response to grammatical variations, while L2 speakers at higher proficiency levels exhibit a 

P600 (e.g., Osterhout, 1997; Tanner et al., 2014). Crucially, averaging over populations comprising both 

types of responses may cancel out characteristic patterns (Tanner, Goldsthein & Weissman, 2018). Other 

recent studies find similar contrasts between grand-average waveforms and results showing the full 

range of brain responses within particular L2 groups (Bice & Kroll, 2021; Grey, 2022). 

These insights demonstrate that grand mean analyses can obscure some systematic variation 

between individuals in ERP responses. At present, we do not have a clear idea why some of this variation 

exists, nor how to incorporate these findings in current models of language processing. This research 

nevertheless emphasizes that it is important to take individual variation into account, particularly in 

(typically more heterogeneous) L2 populations, and that the challenge for future research is to develop 

more powerful ways to capture variation in all of the dimensions that ERPs have to offer in order to help 

us gain a better understanding of the underlying mechanisms.  

 In the current paper, we take a step in this direction. Analyses based on mean amplitude certainly 

have their merits (increased signal-to-noise ratio) and have contributed many interesting insights into 

real time L2 processing. They may, however, fail to recognize important between-participant 

differences, and can even lead to wrong conclusions. Therefore, it is important that more research should 

focus on individual variation in the ERP signal of L2 speakers. The goal of the current paper is to provide 
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a new set of tools to study these individual differences.   

 

1.2 Problems with the traditional Response Magnitude Index 

Some of the studies of individual differences in L2 ERPs listed above used a measure of average 

response/effect magnitude (the Response Magnitude Index,2 RMI, in Tanner, Inoue & Osterhout, 2014), 

calculated for each individual. This is defined as the mean activity difference between two conditions 

(e.g., ungrammatical minus grammatical condition in a morphosyntactic violation paradigm), averaged 

over all trials in a somewhat arbitrarily selected time window (usually 300 500 ms for the N400/LAN, 

and 500 800 to 1000 ms for the P600), for a particular selection of electrodes. This measure has been 

very valuable in allowing researchers to discover important patterns of individual variation (see 

Pélissier, 2020, for an overview). However, there are also a number of drawbacks associated with this 

approach.  

The first two issues of the Response Magnitude Index concern the practice of averaging over 

the items and averaging across a time window. When averaging over items, outliers may have a 

substantial effect on the calculated average. This is particularly problematic in ERP data, which has a 

relatively low signal-to-noise ratio. Calculating ERP magnitude as the average amplitude of the ERP 

waveform in a certain time window has drawbacks (see Luck, 2014 and Luck & Gaspelin, 2017 for 

discussion, and see Meulman, Wieling, Sprenger, Stowe, & Schmid, 2015 for an approach to avoid these 

problems). In particular, there is no independent objective way to define the measurement window. 

Instead, the recommended standard practice is to select a time window based on previous reports and 

visual inspection of the data. As a consequence, participant variability with respect to latency is ignored, 

which may lead to a loss of power and may cause some L2 speakers  capacity to be underestimated.  

This poses a particular problem for research on L2 acquisition and questions of the attainability 

of native-like grammatical processing. It has often been pointed out that the added cognitive load 

                                                 
2 In addition to the RMI, Tanner et al. also calculated the Response Dominance Index (RDI), which is a metric of 

how N400- or P600-  Although this is a useful measure, it is less 
relevant for the current paper, which focusses on amplitudes above the baseline when studying components 
with a positive polarity (e.g., P600), and amplitudes below the baseline for negative polarity components (e.g., 
N400). 
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imposed by the management of two linguistic systems in bilinguals may lead to differences in accuracy 

rates (Hopp, 2010) and linguistic processing (Green, 2011). In particular, delayed responses (Bialystok, 

2009) and slower processing routines (Kotz, 2009) have been found. This implies that even if bilinguals 

do show a similar effect in the ERP signal as the monolinguals in response to a violation in the input, it 

may occur at a different latency  and the fact that similar effects have often been observed in the native 

language of bilinguals (e.g., Schmid & Köpke, 2017) implies that they do not necessarily reflect 

differences between native speakers and L2 speakers but rather between monolinguals and bilinguals. 

This problem is further increased as the delay may be modulated by individual factors, such as 

proficiency level. Such differences are again likely to be greater in a bilingual than a monolingual 

population. Since averaging the signal across the same time-window for both populations may thus 

make the effect for L2 speakers appear smaller or even lead to its disappearance altogether, latency and 

amplitude effects should be teased apart.  

Traditionally, latency effects have only been investigated in grand average waveforms of groups 

of L2 speakers (e.g., Kotz, Holcomb, & Osterhout, 2008; Rossi, Gugler, Friederici, & Hahne, 2006; 

Sabourin & Stowe, 2008). These studies do find delayed P600 effects in (lower proficiency) L2 speakers 

compared to native speakers, and attribute this to more uncertainty and/or processing problems for L2 

speakers. To our knowledge, there have thus far not been any ERP studies that have examined latency 

effects of ERP components in L2 speakers at the individual level. 

A final concern about the Response Magnitude Index as a gradient indicator of the native-

likeness of responses to ungrammaticalities is more fundamental in nature. By definition, in this measure 

it is the magnitude (i.e., amplitude difference) of the ERP response of an L2 speaker that is taken as an 

indicator of nativelikeness. However, the actual size of an ERP component is dependent on 

many factors, and varies considerably even in monolingual native speakers (who have full mastery of 

the language). The size of the P600, for example, has been shown to be influenced by factors such as 

cognitive control (Beatty-Martínez et al. 2020) or differences in linguistic processing that are yet to be 

further determined (Tanner, 2019). Of particular interest here is the finding that language experience 

plays a role in determining the size of the P600 (Pakulak & Neville, 2010). Since monolingual and 

bilingual populations by definition have different levels of exposure (as the bilinguals have to divide the 
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available time between their languages), differences in amplitude are problematic in establishing 

whether L2 speak

simply be the result of these speakers not having been exposed to the structure as often as the native 

speakers. Arguably, therefore the size of an ERP response in an L2 speaker may not be the best indicator 

of nativelikeness, and a more appropriate measure may be its robustness (i.e., how reliably they are able 

to show the response we would generally find in a native speaker). 

To overcome the issues with the Response Magnitude Index, as well as to test our hypothesis 

that the robustness of an L2 speaker s ERP response provides a good measure of nativelikeness, we 

propose an approach that extracts a set of ERP component measures based on 

waveforms for a given time series using generalized additive modelling (Wood, 2017).  

 

2. Generalized additive modelling-based individual difference 

measures 

 

2.1 Estimating ERPs through generalized additive modelling 

As a first step, our approach entails using a generalized additive model (GAM; Wood, 2017) capable of 

estimating ERPs through a non-linear regression approach. The activity present in the ERP waveform 

recorded for a single trial (within a participant) will include stimulus-evoked potentials, as well as 

background activity that is not related to the stimulus. The standard ERP approach averages these 

observed voltages for multiple trials directly, and the resulting averages are used in a subsequent 

statistical analysis. Often, such analyses also require the dichotomozation of inherently interval 

variables, such as frequency. GAMs provide a nonparametric regression 

ERP response over time, while appropriately dealing with item-based variability through a mixed-effects 

regression approach (see Wood, 2017, for a complete overview of the theory and practical applications, 

and Meulman et al., 2015 and Abugaber et al., 2023, for examples of applications for L2 research). 

The advantage of using a statistical approach to obtain the (smooth) ERP signal, rather than 
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using an averaging procedure, is that the resulting modelled waveform is much less susceptible to 

outliers. GAMs are able to appropriately deal with the complex shape of the ERP signal, since they 

identify the non-linear pattern automatically without overfitting (see also the discussion in Wieling, 

2018). Importantly, in finding the optimal fit, GAMs do not minimize the difference between the model 

fit and the actual values (i.e., the error), but rather minimize a combination of this error and a smoothness 

penalty. The consequence of this is that non-linear (i.e., less smooth) patterns are only obtained when 

adequately supported by the data (assessed via cross-validation). As generalized additive modelling is a 

regression-based approach, it is well suited to assess the influence of morphosyntactic manipulations on 

the ERP signal as it unfolds over time. 

Since the goal of this paper is to identify participant-specific measures, we fit participant-

specific GAMs on the basis of the time-locked EEG signal  (i.e., per sentence and per participant) across 

the full time range per trial (of e.g., -500 to 1400 ms before/after target onset). A simple model 

specification (in R code) may look as follows: 

 

µV ~ s(Time) + s(Time, by=IsUngrammatical) + s(Time, Item, bs='fs', m=1) 

            

This specification indicates that our dependent variable is the ERP amplitude (in microvolts), 

which we are modelling by allowing a non-linear effect of time (i.e. s(Time)), and we obtain the pattern 

for the difference waveform directly by including a binary difference smooth (ungrammatical: 1 vs. 

grammatical: 0). The final item in the model specification represents the random effect of item via a 

s the individual (non-linear) variability in the ERP signal across 

items. To see why the second term indeed models the (potential) non-linear difference between the 

grammatical and ungrammatical term, it is important to note that when the by-variable 

second smooth is reduced to 0 (i.e., 

removed). In the other case, this smooth will model a non-linear pattern. Consequently, for the 

grammatical case, the fixed-effect pattern only consists of the first smooth over time, s(Time), whereas 

for the ungrammatical case the resulting pattern is modelled by the first and the second smooth over 

time added together. This means that the second smooth must model the difference between the 
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grammatical and the ungrammatical condition (see also Wieling, 2018). The modelled difference 

waveform is used as a basis from which the different participant-specific measures are extracted.  

Analysing the ERP signal through GAMs bears some similarity to other single-trial methods, 

particularly the rERP framework (Smith & Kutas, 2015a, 2015b). The rERP approach uses regression 

Smith & Kutas, 2015a, 

p. 161). The result of this approach is an estimated ERP waveform, with the advantage that it also allows 

for (component) overlap correction, and the waveform can be analysed just as ERPs are (e.g., using 

averaging across a certain time window). While our approach does not allow for overlap correction, the 

shape of the GAM smooth does allow us to investigate the presence (and robustness) of a peak in this 

modelled (difference) ERP signal (see Section 2.2.3 for further discussion). In contrast to the rERP 

approach, the GAM approach does not assume independence of subsequent data points, and offers a 

simpler procedure to assess significance. In principle, our approach of extracting the set of individual 

difference measures described below would also be applicable using the rERP signal instead of the 

GAM difference waveform as input, as long as the standard error on the basis of the underlying trials is 

known.  

 

2.2 Extracting the individual difference measures 

After fitting a GAM for each participant, the second step of our method involves extracting a set of 

individual measures from the GAM smooth, which are based on amplitude, area and peak effects. In 

addition to the traditional Response Magnitude Index, we have created two other measures that intend 

to quantify the size of the response (i.e., the amount of neural activity), but which are less susceptible to 

influence by outliers and less dependent on a specific time window, and therefore likely offer a more 

reliable representation. In addition, we propose a measure that captures whether the response is robust: 

a consistent response with little variability across trials is more robust than one with substantial 

variability across trials. Finally, we have created two measures that can be used to investigate latency 

effects in the timing of the ERP response.  

The extracted measures are summarized in Table 1 and illustrated in Figures 1 and 2, and will 
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be further explained in the next subsections. For completeness, we also include the traditional Response 

Magnitude Index (1), which is based on the mean of the original data, in addition to our new measures, 

Modelled Area, Height Modelled Peak, Normalized Modelled Peak, Modelled Area Median Latency 

and Modelled Peak Latency (2 6), which are based on the GAM fitted smooth of the difference 

waveform.  

 

 
Table 1  
The Individual Difference Measures  
 

Measure Unit What does it quantify? 
1. Response Magnitude 

Index 
Amplitude in µV Size of response  

2. Modelled Area Amplitude in µV * time in ms Size of response  
3. Height Modelled Peak Amplitude in µV Size of response 
4. Normalized Modelled Peak Unit of standard deviation (value >1: 

reliable peak, 0 1: large item variation)  
Robustness of response 
(response stability) 

5. Modelled Area Median 
Latency 

Time in ms Timing of response 

6. Modelled Peak Latency Time in ms Timing of response 
 

Note. Measure 1 is the traditional Response Magnitude Index based on the averaged original data, 
measures 2 6 are based on a GAM fitted smooth of the difference waveform. 
 
 
Figure 1 
Extracting the Traditional Response Magnitude Index (Measure 1) 

 
Note. This figure depicts the ERP signal averaged (over trials) for one participant. The green dashed line 
represents the averaged waveform for grammatically correct targets, and the orange solid line the 
averaged waveform for the ungrammatical targets. The blue rectangle depicts the time window over 
which the average amplitude is calculated (means are represented by the bold dashed horizontal lines). 
The amplitude difference between the two dashed lines is the Response Magnitude Index, which would 
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equal around 3.6 µV in this example. 
 
 
Figure 2 
Extracting the GAM-Based Measures (Measure 2 6) 

 
Note. This figure depicts the GAM estimated ERP signal for all trials by one participant. The solid black 
line shows the GAM-smooth of the difference waveform (ungrammatical  grammatical). The dotted 
black signal shows the difference waveform of the averaged original data. The red shaded area marks 
the selected search window (as broad as possible to prevent a subjective bias of the researcher). The 
grey shaded area marks the 95% confidence bands of the GAM-smooth. The Modelled Area (measure 
2) is marked in blue (in this example its size, µV*ms, would be 3048  note that, as explained above, 
the smooth becomes zero for the grammatical condition). The point marking the Modelled Area Median 
Latency (measure 5) is shown as the dotted vertical line, here with a latency of 905 ms. The height and 
latency of the modelled peak are found using the derivative of the GAM smooth. The peak can be found 
where the derivative, shown as the red dashed line, crosses the x-axis (i.e., equals zero), representing 
the point at which the GAM-smooth stops increasing and starts decreasing. In this example, the Height 
of the Modelled Peak (measure 3) would be around 6.6 µV, and the Modelled Peak Latency (measure 
6; shown by the vertical dashed line) around 937 ms. Finally, the Normalized Modelled Peak (measure 
4) is found by dividing the height of the peak by 1.96 times the standard error of this height (in this 
example the value would be 1.9, which as the value is higher than 1 means the peak is robust). 
 

While these measures are not intended to be able to quantify variation across all dimensions in 

which variation in ERP waveforms may present itself, they provide a (useful) starting point, allowing 

researchers to choose whichever best suits their research question and particular dataset. In the empirical 

example that we present below, we demonstrate the benefits and drawbacks of each of the extracted 

measures.  

 

2.2.1 Traditional Response Magnitude Index 

To evaluate the effectiveness of our GAM-based individual difference measures, we include the 
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traditional Response Magnitude Index (measure 1 in Table 1) of quantifying the average ERP response 

magnitude. As indicated, this measure has been used in previous research (e.g., Alemán Bañón et al., 

2017; Tanner et al., 2014) and is defined as the mean activity difference between two conditions (e.g., 

ungrammatical minus grammatical) averaged over all trials, in a selected time window (e.g., 500 1000 

ms), for a particular (selection of) electrode(s). The unit of measurement is amplitude in microvolt (µV), 

and the measure is intended to quantify the size of the response (i.e., the amount of neural activity) for 

the particular component under investigation. In the example presented in Figure 1, the Response 

Magnitude Index would yield a value of around 3.6 µV.3  

 

2.2.2 Modelled Area measures 

The Modelled Area (measure 2 in Table 1) is  as defined by Luck 

(2014), which has been put forward as an alternative to determining the  mean amplitude over a time 

window. Specifically, similar to the claims that we have made in Section 1.2 of this paper, Luck states 

that if a component occurs later in one group than in another (which is often the case for L2 speakers 

compared to native speakers), it may be problematic to compare mean amplitude over the same time 

window in both groups. Luck suggests instead to use the signed area measure: the geometric area under 

the curve (with signed  meaning positive or negative, depending on whether one is interested in regions 

above or below the baseline), measured in units of µV * ms. This measure is not sensitive to differences 

in latency. The advantage of using this measure is that one can use a fairly wide measurement window, 

without any cancellation from previous or subsequent waves in the opposite direction (due to the 

. It also eliminates any bias that we might introduce by selecting a narrow 

time window on the basis of the observed time course of the effect.  

this distinction between a time window in which all measurement points of the waveform are included 

in the calculation of the measure (such as in the Response Magnitude Index), versus a search window 

                                                 
3 It is also possible to calculate the Response Magnitude Index based on the GAM-fitted smooth values in the same 

time window, rather than the original values. We did this for the empirical example presented later in this 
paper. The results showed a very strong correlation between these two measures of r = .96, p < .001.  
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in which only measurement points of the waveform that meet certain criteria are taken along in the 

calculation of the measure (such as our Modelled Area measures, and also the Modelled Peak measures 

which we will discuss next). 

Note that we calculate the Modelled Area based on the GAM fitted smooth, rather than on the 

original data. This eliminates some of the disadvantages of the signed area measure Luck (2014) 

mentions. Specifically, he warns that noisy waveforms will tend to have larger area values than clean 

waveforms, and consequently one cannot compare area values for groups or conditions with different 

noise levels. Using GAMs in combination with determining a difference smooth should largely alleviate 

this problem, as it will use the underlying smooth trajectory rather than the noisy signal to determine the 

area.  

The Modelled Area measure was furthermore used to extract a measure of latency (measure 5 

in Table 1), by using the fractional area technique (Hansen & Hillyard, 1980). This technique defines 

the latency of the component as the first time point at which a certain percentage (typically, 50%) of the 

total area of the component has been reached (i.e., the median). Fractional area latency, traditionally 

computed from an area of the average waveform, tends to provide the most accurate method for 

measuring changes in latency of a range of ERP components (  

Here, we extract Modelled Area Median L  by using the 50% area latency of the signed 

geometric area under the GAM difference smooth. 

 

2.2.3 Modelled Peak measures 

When researchers first started to use ERPs to investigate neurocognitive processing (i.e., roughly from 

the 1930s to the 1970s), they had to resort to measuring the size of the ERP with a ruler (Donchin & 

Heffly, 1978), and peaks were simply the easiest characteristic of the waveform to measure. Therefore, 

peaks were the standard measure at the time. Later, when computational techniques improved, people 

were able to calculate more sophisticated measures. Over the past few decades, mean amplitude (rather 

than peak amplitude) gradually became the standard.  

The main reason why mean amplitude is usually thought to be superior to peak amplitude is that 
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peak amplitude is easily influenced by noise. Indeed, as Clayson, Baldwin & Larson (2013) illustrated 

in their simulation study, increases in noise drastically affect the peak amplitude measure.  

Crucially, this is true when the peak measure is extracted from the original (observed) data of 

single trials (and when taken from the averaged ERP waveform, there are other issues such as effects of 

latency jitter and bias by the number of trials; see Luck, 2014). Our approach differs in that we extract 

peak measures from the modelled (GAM) waveform. As explained in Section 2.1, the GAM 

appropriately deals with item variation, making the peak measures we extract from this waveform much 

less sensitive to noise and outliers, latency jitter and bias by the number of trials, as well as avoiding the 

necessity of selecting an arbitrary time window which may disadvantage some participants. 

Furthermore, a standard error of the height of a modelled peak can be calculated, allowing us to assess 

its robustness. 

Before any peak measure can be extracted, two aspects need to be specified: a search window 

and the polarity of the peak of interest. As we described above, we recommend extracting the GAM-

based measure from the modelled difference waveform, which should single out the component(s) of 

interest. This means that the search window can be sufficiently wide to capture individual (latency) 

differences. In the empirical example presented in Section 3 we use the full search window of 0 to 1400 

ms, to demonstrate how we can study the P600 effect without imposing bias from an arbitrarily chosen 

(narrower) time window. By specifying the polarity, we determine whether we are interested in a 

positive component (such as the P600) or a negative component (such as the N400).  

To find the peak in the (GAM-)modelled difference wave, we use the derivative4 of the GAM 

function (plotted as the red dashed line in Figure 2). In case we are looking for a positive peak, we find 

the measurement point 

(i.e., the slope is increasing before the peak) and slope is 

decreasing after the peak).5 

                                                 
4 The derivative, in mathematics, is the rate of change of a function with respect to a variable. 
5 A few other conditions need to be specified in order to select the Modelled Peak of interest. These conditions 

may differ depending on the setup of the experiment and/or component of interest. In the empirical example 
presented later in this paper, we 1) used the highest peak if multiple peaks were detected in the defined search 
window, and 2) took the highest point of the GAM smooth in the defined search window if no clear peak was 
detected: for all participants for which this was the case (21 L2 speakers and 4 native speakers) this meant that 
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For this measurement point we extract the Height of the Modelled Peak (measure 3), and the 

Modelled Peak Latency (measure 6). The Normalized Modelled Peak (measure 4) is calculated by 

dividing the height of the modelled peak by 1.96 multiplied by the standard error (SE). This 

normalisation step provides us with a measure of peak robustness. Effectively it indicates how many 

(95%) confidence bands above baseline the effect is. If the value is larger than 1, it means there is a 

reliable peak (i.e., the confidence band of the peak is not overlapping with the x-axis). If the value is 

between 0 and 1, then there is a large amount of item variation (i.e., the confidence band of the peak is 

overlapping with the x-axis), and thus the presence of the peak in this individual is less reliable. 

In the following, we describe an empirical example, using data from a previously published 

experiment (Meulman et al, 2015), to demonstrate whether the GAM-based individual difference 

measures are indeed capable of capturing the effects they intend to measure, and how the measures may 

be applied in studies on L2 processing. 

3. Empirical example: P600 paradigm  

 

3.1 Dataset and analysis 

We re-analysed data from a study on the processing of grammatical gender violations in native Slavic 

L2 speakers of German (Meulman, Wieling, Sprenger, Stowe & Schmid, 2015). Participant 

characteristics are summarized in Table 2, and all participants were right-handed and did not have any 

cognitive, visual, or auditory impairments. The benefit of using this dataset for the present demonstration 

is that it contains a relatively large sample (compared to most ERP studies) of N=66 L2 speakers and 

N=29 native speakers of German, and that the effects that are present in the data are known and have 

been reported in Meulman et al. (2015). Specifically, whereas native speakers consistently showed a 

P600 for gender violations, the researchers found a gradual change in linguistic processing for the L2 

speakers that varied by age of acquisition of the L2, with L2 speakers that started learning at an earlier 

                                                 
the highest point was at the end of the search and measurement window (1400 ms), therefore being our best 
proxy of the peak (which is assumed to occur after the search window). Of course, one may also choose to not 
extract any peak measures when no clear peak is detected, and simply distinguish individuals with a clear peak 
from those without a clear peak. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



GAM-BASED INDIVIDUAL DIFFERENCE MEASURES FOR L2 ERP STUDIES        17 
 

age showing a P600 and L2 speakers that started learning at a later age showing a posterior negativity. 

In other words, there is systematic variability across individuals in showing the P600 effect, which may 

be further investigated using the GAM-based individual difference measures. We confine ourselves to 

a very brief description of the participants, materials and procedures of the data that have been included 

in the current analysis below, and refer the reader to Meulman et al. (2015) for further details. 

Table 2 
Participant characteristics 
 

Characteristic or 
measure 

 L2 speakers (n = 
66) 

Native speakers 
(n = 29) 

Age and exposure Age at testing in years 28.9 (18 53) 37.8 (22 58) 
AoA in yearsa 17.7 (7 36)  
AoE in yearsb 15 (7 32)  
LoR in yearsc 

Sex 
11.3 (4 25) 
61F, 5M 

 
19F, 10M 

Proficiency 
measures: 

C-test in %d 80.9 (51 95) 93.2 (86 98) 
Gender assignment in %e 93.3 (72.9 100) 99.9 (99 100) 

 

a Age of acquisition (= age of arrival in the L2 country) 
b Age of first exposure to the L2 (either in the L2 country or in a classroom setting outside of the L2 
country) 
c Length of residence in the L2 country 
d Percentage of correct responses in the C-test 
e Percentage of correct responses in the pen-and-paper gender assignment task 
 
 

The current analysis includes data from a total of 95 participants: 66 highly proficient second 

language speakers of German (with a Russian or Polish L1 background) and 29 German native speakers. 

L2 proficiency was assessed by means of a C-test (constructed by Schmid, 2011, available at 

https://languageattrition.org), which consisted of two texts containing gaps where parts of some words 

taken as their L2 proficiency score in the analysis.  

In the EEG experiment, the participants listened to auditorily presented sentences while their 

electroencephalogram was recorded. Some of the sentences contained violations in grammatical gender 

agreement (48 grammatical and 48 ungrammatical trials per participant).6 An example sentence is given 

                                                 
6 In total, each participant listened to 278 sentences, as in addition to the grammatical gender condition the 

experiment also contained sentences with verb agreement violations and a number of well-formed filler 
sentences. The verb agreement condition was not included in the current paper, since these violations 
consistently elicited a P600 effect throughout the L2 speakers as well as the native speakers, making this 
condition less interesting to use as an example for an investigation of individual differences. 
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below (the critical target from which the ERP was measured is underlined and the * indicates the 

incorrect form of the determiner):  

 

Nach der Schlägerei ist das/*der Auge des Angestellten von der Krankenschwester versorgt worden. 

(After the fight theneut/*themasc eye of the worker was treated by the nurse.) 

 

After acquisition, the EEG data was re-referenced, filtered (<0.1Hz and >40Hz), segmented and 

baselined. Average ERPs (for the traditional approach) and GAM smooths (for the GAM-based 

approach) were obtained for trials free of artifacts without regard to behavioural responses. Specifically, 

ocular artefacts were corrected, but segments with other artefacts were removed. A central-posterior 

region of interest containing six electrodes (P3, Pz, P4, O1, Oz, O2) was used for analysis,7 consistent 

with the location in which other studies on grammatical gender processing have found the (late stage) 

P600 effect to be most pronounced (Molinaro, Barber, & Carreiras, 2011). The data was down-sampled 

to 100 Hz for analysis.8 

All analyses presented below were performed in R (version 4.2.0: R Core Team, 2022), and 

linear regression as well as generalized additive modelling analyses were performed using the mgcv R 

package (version 1.8.40: Wood, 2017; Wood, Goude, & Shaw, 2015). The data and commands used for 

the analysis are available in the supplementary material. For reproducibility, the data, analysis and 

results are also available as a paper package stored at the Open Science Framework repository 

(https://osf.io/zkd47/). 

In order to isolate the ERP component of interest, we fitted our GAM on the difference 

waveform (i.e., in our case the difference between the ungrammatical and the grammatical condition) 

across the time-locked EEG signal per trial in the complete range of -500 to 1400 ms before/after the 

onset of the target word, using the model specification shown above (Section 2.1). These difference 

                                                 
7 A GAM analysis would be able to deal with multiple electrodes, and this is certainly worth pursuing as scalp 

distribution provides another source of inter-participant variability. However, our current goal is to provide a 
clear demonstration of our measures in comparison the approach most usually applied, which is why we 
decided to focus on one region of interest. 

8 The data was down-sampled to 100 Hz to reduce processing time of the GAMs. Although this does result in loss 
of data, it should not affect the results of our investigation of the P600, which is a large, slow-going effect. 
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smooths are very helpful in showing the nature of the experimental effects and making the time course 

of the effects clear, by subtracting away everything except the one aspect that differs across conditions 

(Luck, 2014).   

The traditional and GAM-based individual difference measures were extracted following the 

procedure described in Section 2.2 above. For the traditional Response Magnitude Index, a time window 

was selected of 500 1200 ms post stimulus onset, in line with what was used in the original Meulman 

et al. (2015) paper. This window, which is somewhat longer than is typical in P600 studies, was chosen 

based on visual inspection of the data to identify where the main effect lies, in order to create the optimal 

conditions for the Response Magnitude Index to perform well against the novel measures.9 For the 

GAM-based measures, a search window from 0-1400 ms was specified, and the polarity was specified 

The plots illustrating the GAM smooths and 

accompanying individual difference measures (similar to Figure 2) for all participants are available in 

the paper package. 

 

3.2 Comparison between the measures: distributions and correlations 

Figures 3 and 4 show the distribution of values for the various measures. Figure 3 shows the measures 

of the size/robustness of the response. Comparing the traditional Response Magnitude Index (measure 

1), the Modelled Area (measure 2) and the Height of the Modelled Peak (measure 3), we see that all 

measures show a similar pattern, with higher amplitudes for native speakers compared to L2 speakers, 

and the L2 speaker group showing somewhat more variation than the native group. In the Normalized 

Modelled Peak (measure 4) we see that the distributions of the native and L2 speaker group are further 

apart, with the native speakers showing far more stable peaks (i.e., those with values of at least 1) than 

the L2 speakers. 

Figure 4 shows the distributions of the two latency measures. In the Modelled Area Median 

Latency (measure 5), the mean latencies in the L2 speaker group and the native group are similar, but 

                                                 
9 To assess the effect of choosing a different time window for the Response Magnitude Index, we have also 

experimented with using a more commonly used time window ranging from 500 to 800 ms. See footnote 12 
for those results. 
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the L2 speaker group shows more variability. In the Modelled Peak Latency (measure 6) latencies for 

the L2 speaker group are much higher than for the native group, and the variability among L2 speakers 

is also larger than among native speakers.  

 In nearly all of the plots presented in Figures 3 and 4 a few outliers are visible. In some cases, 

these datapoints are not likely to constitute a meaningful representation of the P600 effect. However, to 

be on the cautious side and not a priori assume measurement error, we retained all data points in the 

analysis. 

The paired correlations between all measures are listed in Table 3. We see that correlations 

between the measures aimed at quantifying size of the response are strong: ranging from r = .74 for the 

Response Magnitude Index with the Height of the Modelled Peak, and r = .86 for the Modelled Area 

measure with the Height of the Modelled Peak, to r = .92 for the Response Magnitude Index with the 

Modelled Area measure. The Normalized Modelled Peak correlates moderately with the other amplitude 

measures: r = .47, r = .52 and r = .59 for the Modelled Area, Height of the Modelled Peak and Response 

Magnitude Index, respectively. 

The latency measures correlate r = .62 with each other. Furthermore, there are weak correlations 

between the Modelled Area Median Latency and the Height of the Modelled Peak (r = .27), and between 

the Modelled Peak Latency and the Normalized Modelled Peak (r = -.35). There are no other significant 

(p < .05) correlations between the latency and amplitude measures (rs between -.20 and .10).  

From these correlations we can conclude that the three measures aimed at quantifying the size 

of the response (or the amount of neural activity) are largely measuring the same construct. The two 

measures of latency also show a correlation, but somewhat less strong. Furthermore, we observe that a 

high magnitude or peak of the response does not always coincide with a robust peak. Finally, the latency 

of the response seems to be somewhat independent of the size, although there is a hint that later peaks 

go together with less reliable peaks due to the low negative correlation. 
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Figure 3 
Distribution of Values for the Amplitude Measures 

 
 
 
 
Figure 4 
Distribution of Values for the Latency Measures 
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Table 3 
Pairwise Correlations Between the Measures. 
 
 Response 

Magnitude 
Index 

Modelled 
Area 

Height 
Modelled 
Peak 

Normalized 
Modelled 
Peak 

Modelled 
Area Median 
Latency 

Response Magnitude Index      
Modelled Area  0.92***     
Height Modelled Peak  0.74***  0.86***    
Normalized Modelled Peak  0.59***  0.47***  0.52***   
Modelled Area Median Latency -0.06  0.06  0.27*  0.10  
Modelled Peak Latency -0.20 -0.02  0.00 -0.35**  0.62*** 

 

Note. *** p < .001, ** p < .01, * p < .05. 

 
 

3.3 Systematic individual variability: predictors of group and proficiency 

In order to determine the suitability of these measures for predicting systematic variability at both group 

and individual levels, we first fitted a binomial linear regression model with group (nonnative = 1 vs. 

native = 0) as the dependent variable,10 assessing the impact of the relevant measure as the predictor. 

We fitted separate models for each measure in order to estimate which of them had greater explanatory 

power as a predictor of group. The results of this analysis (see Table 4) show that the Normalized 

Modelled Peak is by far the strongest predictor of the group effect. The model including this predictor 

explains 25.60% of the deviance, whereas the other measures only explain between 0.05% and 7.07%. 

The negative coefficient for the Normalized Modelled Peak measure means that a more robust (i.e., 

reliable) peak is less likely to be associated with an L2 speaker than with a native speaker (  = -2.181, 

SE = 0.564, p < .001).  

 The only other significant predictor of group is Modelled Peak Latency, with a higher value 

meaning that a later peak is more likely to associated with an L2 speaker (  = 0.003, SE = 0.001, p = 

.017) than a native speaker. This model, with Modelled Peak Latency as predictor of group, explains 

about 7.07% of the deviance. 

 The Response Magnitude Index, the Modelled Area measure, the Height of the Modelled Peak 

                                                 
10 Note that in this analysis we use group and proficiency as dependent variables, whereas typically, in an 

investigation of group or proficiency effects, these would be the independent rather than the dependent 
variables in the model. However, the objective of our analysis was not to investigate group or proficiency 
effects as such, but rather to evaluate how well the different ERP measures are able to predict group 
membership and proficiency. 
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and the Modelled Area Median Latency only explain about 2.59%, 0.05%, 0.70% and 0.18% of the 

deviance in group, respectively, and none of them are significant predictors of group (all ps > .1).   

 

 
Table 4  
Results for the Predictors of Group (L2 Speakers vs. Native speakers).  
 

Predictor Estimate 
Std. 
error 

z-value p-value 
Deviance 
explained 

Response Magnitude Index -0.156 0.106 -1.471 .141  2.59% 
Modelled Area <-0.001 <0.001 -0.221 .825  0.05% 
Height Modelled Peak -0.063 0.078 -0.809 .418  0.70% 
Normalized Modelled Peak -2.181 0.564 -3.867 <.001 *** 25.60% 
Modelled Area Median Latency  <0.001 0.002 0.412 .680  0.18% 
Modelled Peak Latency 0.003 0.001 2.395 .017 * 7.07% 

 

Note. Each row of the table represents a separate binomial linear regression model with IsL2speaker as 
the dependent variable, assessing the impact of the relevant predictor. Each model was fitted on the basis 
of 72 data points.11 
 

Similarly, we fitted a binomial linear regression model for each of the measures with 

proficiency, as indexed by the C-test (answers correct vs. answers incorrect, with scores ranging from 

51 to 95 percent correct), as the dependent variable. Again, we assessed the impact of the relevant 

measure as predictor in these models, to see which had the greatest explanatory power. The results of 

this analysis, which focusses on the L2 speaker group only (as almost all monolinguals perform at 

ceiling), are presented in Table 5 and again show that the Normalized Modelled Peak is the strongest 

predictor of proficiency: the model with this predictor explains 4.12% of the deviance. A higher value 

for the Normalized Modelled Peak measure predicts a higher score on the proficiency index (  = 0.348, 

SE = 0.090, p < .001), which means that L2 speakers with a higher proficiency have more robust peaks 

than L2 speakers with a lower proficiency.  

 Here, the only other significant predictor of proficiency is the traditional Response Magnitude 

Index, with a higher value predicting a higher score on the proficiency index (  = 0.042, SE = 0.015, p 

                                                 
11 Since our investigation focused on P600 effects, participants not showing any effect above baseline in the search 

window were automatically left out here, since (positive polarity) Modelled Area and Modelled Peak measures 
could not be calculated for these individuals (these were 20 L2 speakers and 3 native speakers, who showed a 
negativity instead of a positivity). A separate analysis using GAM-based individual difference measures could 
be conducted focusing on negative polarity effects, which, together with the analysis we presented here, gives 
a complete picture of the individual variation present in this dataset. However, our current goal is to provide a 
clear demonstration of our new measures, which is why we decided to keep the analysis simple and focus on 
one polarity. 
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= .005), i.e., L2 speakers with higher proficiency have a higher average response magnitude than L2 

speakers with lower proficiency. This model, with Response Magnitude Index as predictor of 

proficiency, explained 2.30% of the deviance. 

 The Modelled Area measure, the Height of the Modelled Peak and the two latency measures 

only explained between 0% and 0.66% of the deviance in proficiency and none of them were significant 

predictors (all ps > .1).   

 
Table 5.  
Results for the Predictors of Proficiency (Within the L2 Speakers)  
 

Predictor Estimate 
Std. 
error 

z-value p-value 
Deviance 
explained 

Response Magnitude Index 0.042 0.015 2.841 .005 ** 2.30% 
Modelled Area <0.001 <0.001 0.093 .926  <0.01% 
Height Modelled Peak -0.008 0.011 -0.756 .449  0.15% 
Normalized Modelled Peak 0.348 0.090 3.846 <.001 *** 4.12% 
Modelled Area Median Latency  <0.001 <0.001 1.383 .167  0.50% 
Modelled Peak Latency <-0.001 <0.001 -1.557 .120  0.66% 

 

Note. Each row of the table represents a separate linear regression model with proficiency (as measures 
by a standard C-test) as the dependent variable, assessing the impact of the relevant predictor. Each 
model was fitted on 46 data points. 
 

 From the results presented above, we can conclude that the Normalized Modelled Peak is the 

best predictor of both group and proficiency. The Modelled Peak Latency is also able to distinguish 

between L2 speakers and native speakers at the group level, and the traditional Response Magnitude 

Index is also able to distinguish between more and less proficient L2 speakers.12 None of the other 

measures, quantifying size or latency of the ERP response, reached significance as a predictor.  

We would like to end this section by making two remarks about the analysis we just presented. 

First, it is worth noting that the mere presence of a peak (i.e., whether we can detect a peak in the GAM 

function of the waveform, coded as a binary true/false variable) was also a strong and significant 

predictor of the group effect (  = -1.530, SE = 0.619, p < .05; deviance explained = 7.68%), and of the 

proficiency effect (  = 0.438, SE = 0.079, p < .001; deviance explained = 8.39%). However, as the 

                                                 
12 When instead of a time window of 500  1200 ms., we use a more restricted P600 time window of 500  800 

ms for the Response Magnitude Index, the performance of the measure to reveal individual proficiency 
differences is diminished and becomes non-significant (deviance explained: 0.89%, p = 0.066). With respect 
to being able to detect group differences, the measure remains non-significant (deviance explained: 3.70%, p 
= 0.074).  
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Normalized Modelled Peak provides additional information about the robustness of the peak compared 

to the mere presence of the peak, we only included the latter in our overview.  

Second, these findings are robust, as the Normalized Modelled Peak remained the strongest 

predictor of both group membership and proficiency irrespective of differently selected time and search 

windows.  

4. Discussion 

This paper set out to create novel individual difference measures, in order to provide more sensitive and 

complete participant-specific measures for quantifying the size, latency and stability of ERP components 

(e.g., the P600). These types of measures are needed as a tool for researchers studying bilingual 

development and ultimate attainment. In this line of research, individual differences are an important 

topic of investigation. We have only just begun to discover the factors that modulate between-participant 

variation in ERP responses, in part due to having previously lacked adequate tools to do so. The 

traditionally-used Response Magnitude Index (Tanner, Mclaughlin, Herschensohn & Osterhout, 2013), 

suffers from a number of drawbacks. By averaging (over items and across a time window), it may not 

, since outliers and latency 

differences may distort these averages and preclude studying latency effects on an individual basis. 

Furthermore, this measure only provides insight into the (average) size 

component, but it does not capture the robustness of an L2 speaker s ERP response.  

 Our approach thus uses generalized additive modelling (GAM) to model the ERP waveform. 

As a single-trial regression-based analysis, this approach is much less sensitive to outliers. From the 

modelled waveform, we extracted several measures without the need to specify a particular time 

window. The Modelled Area measure took the geometric area under the curve as a measure of size of 

the ERP response, and the Modelled Area Median Latency as a measure of timing. The modelled peak 

was extracted to calculate measures of size, latency and robustness of the ERP response: the Height of 

the Modelled Peak, the Modelled Peak Latency, and the Normalized Modelled Peak.   

 In an empirical example, we used data from a previously published experiment (Meulman et al, 

2015) with a relatively large number of L2 speaker and native participants in a P600 paradigm 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



GAM-BASED INDIVIDUAL DIFFERENCE MEASURES FOR L2 ERP STUDIES        26 
 

investigating grammatical gender agreement processing. We investigated how well our GAM-based 

individual difference measures were able to capture the individual variation and how the measures 

compared to the traditional Response Magnitude Index, and to each other, in this respect. 

We showed that, in our sample, the three amplitude measures (traditional Response Magnitude 

Index, Modelled Area and Height of the Modelled Peak) correlated strongly with each other, whereas 

the Normalized Modelled Peak correlated moderately with these amplitude measures, which indicates 

that the measure of robustness captures a partly different construct than the measures of size, and that a 

large ERP response does not always coincide with a stable and robust ERP response. Furthermore, we 

showed that the Normalized Modelled Peak was the measure that was best able to discriminate between 

L2 speakers and native speakers (in addition to the latency of this peak), and between different levels of 

L2 proficiency (as measures by a C-test) in L2 speakers. The traditional Response Magnitude Index was 

also able to distinguish between more and less proficient L2 speakers (although to a lesser extent than 

the Normalized Modelled Peak), but the other amplitude measures did not capture the group and 

proficiency effects.  

The two measures of latency (Modelled Area Median Latency and Modelled Peak Latency) 

showed a moderately strong correlation between each other. Latency of the response seems to be 

somewhat independent of the height of the response, although later peaks sometimes tend to go together 

with less reliable peaks. Modelled Peak Latency is a relatively good predictor for explaining differences 

between the native and the L2 speaker group (although to a lesser degree than the Normalized Modelled 

Peak). But neither Modelled Area Median Latency nor Modelled Peak Latency are good at 

distinguishing proficiency differences between L2 individuals. Plot 6 of Figure 4 gives us some 

indication of why that may be. We see that in the dataset in our empirical example, P600 peaks are rather 

late (even for the native speakers, but particularly for the L2 speakers), which may be specific to this 

dataset, for example, due to the fact that an experimental design with auditory sentence presentation was 

used. As a consequence, there is a truncated range (limited by the end of the measurement window at 

1400 ms) for the L2 group. 

The present results are important for at least two reasons. First, we found that the height of the 

ERP peak did not discriminate well between L2 speakers and native speakers, or more and less proficient 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



GAM-BASED INDIVIDUAL DIFFERENCE MEASURES FOR L2 ERP STUDIES        27 
 

L2 speakers. Instead, the robustness (i.e., reliability) of this peak did prove to be a strong, distinctive 

measure. This is in line with current views on the P600 effect reflecting a process that either occurs or 

does not occur at a critical word. T

many factors, and variation is found even in monolinguals (Pakulak & Neville, 2010; Beatty-Martínez 

et al. 2020; Tanner, 2019). We showed that size and robustness of the modelled peak at least partly 

reflect a different construct (with a correlation of .52, i.e. only 27% overlap), and that the Normalized 

Modelled Peak (i.e., peak robustness) captured a much larger part of the individual variability between 

L2 speakers and native speakers (25.6% versus 0.7% for the Height of the Modelled Peak) and in the 

proficiency score differences between L2 speakers (4.1% versus 0.2%, respectively). We conclude that 

the Normalized Modelled P

this dataset, is modified by whether the individual is an L2 speaker or a native speaker, and by an L2 

speaker ese results suggest that this measure may be a suitable tool for 

future studies on bilingual development. While the traditional measure (RMI) was able to distinguish 

between different levels of L2 proficiency, and to a limited extent also distinguish between native 

speakers and L2 speakers, the Normalized Modelled Peak was much more sensitive, particularly for the 

latter task. 

Second, whereas latency effects have traditionally only been investigated in grand average 

waveforms of L2 speakers, we believe this is the first study to investigate differences in timing of ERP 

responses between L2 speakers at the individual level. Although in our dataset the GAM-based latency 

measures were unable to distinguish more proficient from less proficient L2 speakers, the Modelled 

Peak Latency was a strong predictor for determining whether an individual belonged to the L2 speaker 

or the native speaker group. This suggests that response delays may be an inherent factor of bilingual 

processing, due to the higher cognitive load incurred by processing more than one language (as 

discussed above) as such, rather than indexing different proficiency levels. These results suggest that 

this latency measure may therefore also be a suitable tool for studies on bilingual language processing.  

Nevertheless, further research is needed to evaluate these claims. We included several measures 

of response amplitude and latency in this paper, as an exploration into what could be a good measure to 

quantify individual d Based on only one study it is impossible 
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to establish the performance of each of the measures we presented and conclusively determine which 

measures are (most) useful. We therefore hope other researchers will apply these measures to their 

datasets, further assessing the validity and useability of the measures.13  

Even though the Modelled Area measure was included to quantify the size of the response 

without being affected by latency differences between individuals, this measure did not outperform the 

traditional Response Magnitude Index in our empirical example. The explanation for this likely lies in 

the fact that in our data set any P600 effects found did not suffer from excessive cancellation from 

previous or subsequent waves in the opposite direction. In other studies, however, such opposite waves 

may be present. In that case, in order to calculate the Response Magnitude Index, the researchers may 

have to resort to selecting a narrower window on the basis of the observed time course of the effect in 

the grand average waveform, introducing bias against individuals showing a different time course (and 

the narrower window also may be less sensitive, as we found when evaluating a shorter time window 

for the Response Magnitude Index; see footnote 12). In such a case, assessing the suitability of the 

Modelled Area measure over the Response Magnitude Index would be useful. 

 Furthermore, we have some indication that it may be worthwhile in future research to investigate 

the significance of the binary 

empirical example, the presence of a true peak (as opposed to an increasing signal across the whole 

search window) in the GAM smooth of the waveform was also a strong and significant predictor of the 

group effect and of the proficiency effect (explained deviance 7.7% and 8.4%, respectively  in the latter 

case it therefore even outperformed the Normalized Modelled Peak). In further exploratory analysis (not 

presented in this paper, but available in the paper package) we found that when looking at the subset of 

the data with only true peaks both Modelled Area Median Latency and Modelled Peak Latency are 

excellent predictors of proficiency differences between L2 speakers (both explaining around 15% of the 

deviance). The reason for this difference is that, in the absence of a true peak, these latencies are very 

high, as they simply represent the end of the search window. However, the subset of data containing 

true peaks consists of only 47 out of 72 data points, so some caution in interpreting this result is 

                                                 
13 All necessary functions to conduct these analyses are available in a paper package stored at the Open Science 

Framework repository (https://osf.io/zkd47/) to facilitate their uptake. 
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necessary. Future research is needed to determine the significance of the presence or absence of a true 

peak in the modelled waveform, before any strong conclusions can be drawn from this analysis. 

Nevertheless, our observations do suggest that it is worthwhile to further investigate which factors 

modulate the latency of the modelled peak in L2 populations. 

 To develop a full picture of inter-participant variability, future studies should furthermore 

incorporate other sources of variation across all dimensions of the ERP waveform. For example, our 

approach may be extended to investigate inter-participant variability in scalp distribution, and as a GAM 

analysis would be able to deal with multiple electrodes sites individually, this would be the 

recommended technique. 

In summary, we proposed a new method to extract a set of individual difference measures from 

the ERP waveforms, modelled using GAMs. The advantages of our technique, compared to the 

traditional approach of extracting the Response Magnitude Index, are that the GAM-based individual 

difference measures are less dependent on pre-specified time-windows (therefore latency differences 

between individuals are not penalized), are less sensitive to outliers, and allow for the investigation of 

latency differences between individuals. Our method can be applied to any ERP component (and also 

to any group of participants, i.e., the technique is not limited to investigate ERP effects in L2 speakers), 

as long as the component of interest can be isolated via determining the difference smooth. A 

disadvantage of the present method is that it does (in principle) not distinguish between participants who 

show a clear peak in the ERP effect from those who do not. Nevertheless, running the analysis costs 

relatively little effort, as all R code has been made available (https://osf.io/zkd47). The technique does 

not require more data (either subjects or items) than is usual for ERP studies. Of course, using fewer 

items will make it harder to detect robust peaks (due to larger standard errors). The algorithm is relatively 

fast: processing one participant takes only a few seconds. 

Of the presented GAM-based individual difference measures, the Normalized Modelled Peak 

in particular appears to be a sensitive measure. Specifically, it appears to outperform the traditionally 

used Response Magnitude Index in distinguishing native and non-native speakers or more proficient 

from less proficient L2 speakers. The former is also true for the Modelled Peak Latency, which can be 

used to study individual differences in timing of the ERP response.   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



GAM-BASED INDIVIDUAL DIFFERENCE MEASURES FOR L2 ERP STUDIES        30 
 

 

5. References 
Abugaber, D., Finestrat, I., Luque, A., & Morgan-Short, K. (2023). Generalized additive 

mixed modeling of EEG supports dual-route accounts of morphosyntax in suggesting no 
word frequency effects on processing of regular grammatical forms. Journal of 
Neurolinguistics, 67, 101137. 

Alemán Bañón, J., Fiorentino, R., & Gabriele, A. (2018). Using event-related potentials to track 
morphosyntactic development in second language learners: The processing of number and 
gender agreement in Spanish. PloS One, 13(7), e0200791. 

Alemán Bañón, J., Miller, D., & Rothman, J. (2017). Morphological variability in second language 
learners: An examination of electrophysiological and production data. Journal of Experimental 
Psychology: Learning Memory and Cognition, In Press. 

Bialystok, E. (2009). Bilingualism: The good, the bad, and the indifferent. Bilingualism: Language 
and Cognition, 12(1), 3 11. http://doi.org/10.1017/S1366728908003477 

Bice, K., & Kroll, J. F. (2021). Grammatical processing in two languages: How individual differences 
in language experience and cognitive abilities shape comprehension in heritage bilinguals. 
Journal of Neurolinguistics, 58, 100963. 

Beatty Martínez, A. L., Bruni, M. R., Bajo, M. T., & Dussias, P. E. (2021). Brain potentials reveal 
differential processing of masculine and feminine grammatical gender in native Spanish 
speakers. Psychophysiology, 58(3), e13737. 

Blom, E., Polisenska, D., & Weerman, F. (2008). Articles, adjectives and age of onset: the acquisition 
of Dutch grammatical gender. Second Language Research, 24(3), 297 331. 
http://doi.org/10.1177/0267658308090183 

Bond, K., Gabriele, A., Fiorentino, R., & Alemán Bañón, J. (2011). Individual Differences and the 
Role Proceedings of the 11th Generative 
Approaches to Second Language Acquisition Conference, 17 29. 

Brouwer H., Crocker M.W., Venhuizen N.J., Hoeks J.C.J. (2017). A Neurocomputational Model of 
the N400 and the P600 in Language Processing. Cognitive Science 41(Suppl. 6):1318 1352. 

Carrasco-Ortíz, H., Herrera, A. V., Jackson-Maldonado, D., Ramírez, G. N. A., Pereyra, J. S., & 
Wicha, N. Y. (2017). The role of language similarity in processing second language 
morphosyntax: Evidence from ERPs. International Journal of Psychophysiology, 117, 91-110. 

Clayson, P. E., Baldwin, S. A., & Larson, M. J. (2013). How does noise affect amplitude and latency 
measurement of event related potentials (ERPs)? A methodological critique and simulation 
study. Psychophysiology, 50(2), 174-186. 

De Cat, C., Klepousniotou, E., & 
electrophysiological study of noun-noun compound processing by very advanced L2 speakers of 
English. Frontiers in Psychology, 6, 77. http://doi.org/10.3389/fpsyg.2015.00077 

Donchin, E., & Heffley, E. F., III. (1978). Multivariate analysis of event-related potential data: A 
tutorial review. In D. Otto (Ed.), Multidisciplinary Perspectives in Event-Related Brain Potential 
Research, pp. 555  572. Washington, DC: U.S. Government Printing Office. 

Foucart, A., & Frenck-Mestre, C. (2011). Grammatical gender processing in L2: Electrophysiological 
evidence of the effect of L1 L2 syntactic similarity. Bilingualism: Language and Cognition, 
14(3), 379 399. http://doi.org/10.1017/S136672891000012X 

Foucart, A., & Frenck-Mestre, C. (2012). Can late L2 learners acquire new grammatical features? 
Evidence from ERPs and eye-tracking. Journal of Memory and Language, 66(1), 226 248. 
http://doi.org/10.1016/j.jml.2011.07.007 

Franceschina, F. (2005). Fossilized second language grammars: The acquisition of grammatical 
gender. John Benjamins Publishing. 

Frenck-Mestre, C., Foucart, A., Carrasco-Ortiz, H., & Herschensohn, J. (2009). Processing of 
grammatical gender in French as a first and second language: Evidence from ERPs. EUROSLA 
Yearbook, 9, 76 106. http://doi.org/10.1075/eurosla.9.06fre 

Green, D. W. (2011). Language control in different contexts: the behavioral ecology of bilingual 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



GAM-BASED INDIVIDUAL DIFFERENCE MEASURES FOR L2 ERP STUDIES        31 
 

speakers. Frontiers in Psychology, 2, 103. http://doi.org/10.3389/fpsyg.2011.00103 
Grey, S. (2022). Variability in native and nonnative language: An ERP study of semantic and grammar 

processing. Studies in Second Language Acquisition, 1-30. 
Grey, S., Tanner, D., & van Hell, J. G. (2017). How right is left? Handedness modulates neural 

responses during morphosyntactic processing. Brain Research, 1669, 27-43 
Hagoort, P., Brown, C. M., & Groothusen, J. (1993). The syntactic positive shift (SPS) as an ERP 

measure of syntactic processing. Language and Cognitive Processes, 8(4), 439 483. 
-language processing? Evidence from event-related 

potentials. Journal of Psycholinguistic Research, 30(3), 251 266. 
Hansen, J. C., & Hillyard, S. A. (1980). Endogeneous brain potentials associated with selective 

auditory attention. Electroencephalography and clinical neurophysiology, 49(3-4), 277-290. 
Hopp, H. (2010). Ultimate attainment in L2 inflection: Performance similarities between non-native 

and native speakers. Lingua, 120(4), 901 931. http://doi.org/10.1016/j.lingua.2009.06.004 
Kaan, E., Swaab, T.Y. (2003) Repair, Revision, and Complexity in Syntactic Analysis: An 

Electrophysiological Differentiation. Journal of Cognitive Neuroscience 15(1), 98 110. 

comparison of single participant and jackknife based scoring methods. Psychophysiology, 
45(2), 250-274. 

Kim, A. E., Oines, L., & Miyake, A. (2018). Individual differences in verbal working memory 
underlie a tradeoff between semantic and structural processing difficulty during language 
comprehension: An ERP investigation. Journal of Experimental Psychology: Learning, Memory, 
and Cognition, 44(3), 406. 

Kos M., Vosse T.G., Van Den Brink D., Hagoort P. (2010). About Edible Restaurants: Conflicts 
between Syntax and Semantics as Revealed by ERPs. Frontiers in Psychology 1:1 11. 
pmid:21833277 

Kotz, S. A. (2009). A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain and 
Language, 109(2 3), 68 74. 

Kotz, S. A., Holcomb, P. J., & Osterhout, L. (2008). ERPs reveal comparable syntactic sentence 
processing in native and non-native readers of English. Acta Psychologica, 128(3), 514 27. 

Kryuchkova, T., Tucker, B. V, Wurm, L. H., & Baayen, R. H. (2012). Danger and usefulness are 
detected early in auditory lexical processing: Evidence from electroencephalography. Brain and 
Language, 122(2), 81 91. http://doi.org/10.1016/j.bandl.2012.05.005 

Leckey, M., & Federmeier, K. D. (2019). The P3b and P600(s): Positive contributions to language 
comprehension. Psychophysiology, e13351. https://doi.org/10.1111/psyp.13351 

Loerts, H. (2012). Uncommon gender. Eyes and brains, native and second language learners, & 
grammatical gender. PhD dissertation, University of Groningen. Retrieved from 
http://dissertations.ub.rug.nl/faculties/arts/2012/h.loerts/ 

Luck, S. J. (2005). Ten Simple Rules for Designing and Interpreting ERP Experiments. In T. Handy 
(Ed.), Event-Related Potentials: A Methods Handbook. 

Luck, S. J. (2014). An introduction to the event-related potential technique. Second Edition. 
Cambridge, Massachusetts: MIT press. 

Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment 
Psychophysiology, 54(1), 146 157. 

https://doi.org/10.1111/psyp.12639 
Meulman, N., Stowe, L. A., Sprenger, S. A., Bresser, M., & Schmid, M. S. (2014). An ERP study on 

L2 syntax processing: When do learners fail? Frontiers in Psychology, 5, 1072. 
http://doi.org/10.3389/fpsyg.2014.01072 

Meulman, N., Wieling, M., Sprenger, S. A., Stowe, L. A., & Schmid, M. S. (2015). Age effects in L2 
grammar processing as revealed by ERPs and how (not) to study them. PLoS One, 1 31. 
http://doi.org/10.1371/journal.pone.0143328 

Molinaro, N., Barber, H. a, & Carreiras, M. (2011). Grammatical agreement processing in reading: 
ERP findings and future directions. Cortex, 47(8), 908 930. 
http://doi.org/10.1016/j.cortex.2011.02.019 

Morgan-Short, K., Sanz, C., Steinhauer, K., & Ullman, M. T. (2010). Second Language Acquisition of 
Gender Agreement in Explicit and Implicit Training Conditions: An Event-Related Potential 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



GAM-BASED INDIVIDUAL DIFFERENCE MEASURES FOR L2 ERP STUDIES        32 
 

Study. Language Learning, 60(1), 154 193. http://doi.org/10.1111/j.1467-9922.2009.00554.x 
Morgan-Short, K. (2014). Electrophysiological approaches to understanding second language 

acquisition: A field reaching its potential. Annual Review of Applied Linguistics, 34, 15 36. 
https://doi.org/10.1017/S026719051400004X 

Münte, T., Heinze, H., & Mangun, G. (1993). Dissociation of brain activity related to syntactic and 
semantic aspects of language. Journal of Cognitive Neuroscience, 5(3), 335 344. 

Pakulak, E., & Neville, H. J. (2010). Proficiency differences in syntactic processing of monolingual 
native speakers indexed by event-related potentials. Journal of Cognitive Neuroscience, 22, 
2728 2744. 

Payne, B. R., Ng, S., Shantz, K., & Federmeier, K. D. (2020). Event-related brain potentials in 
multilingual language processing: The N's and P's. In Psychology of Learning and Motivation 
(Vol. 72, pp. 75-118). Academic Press. 

Pélissier, M. (2020). Comparing ERPs between native speakers and second language learners: Dealing 
with individual variability. In A. Edmonds, P. Leclercq, & A. Gudmestad (Eds.), Interpreting 
language-learning data (pp. 39 69). Language Science Press. 
https://doi.org/10.5281/zenodo.4032282 

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ 

Rossi, S., Gugler, M. F., Friederici, A. D., & Hahne, A. (2006). The impact of proficiency on syntactic 
second-language processing of German and Italian: evidence from event-related potentials. 
Journal of Cognitive Neuroscience, 18(12), 2030 2048. 

Sabourin, L., & Stowe, L. A. (2008). Second language processing: when are first and second 
languages processed similarly? Second Language Research, 24(3), 397 430. 
http://doi.org/10.1177/0267658308090186 

Sassenhagen, J., & Fiebach, C. J. (2019). Finding the P3 in the P600: Decoding shared neural 
mechanisms of responses to syntactic violations and oddball targets. NeuroImage, 200, 425 436. 
https://doi.org/10.1016/j.neuroimage.2019.06.048 

Schmid, M.S. (2011). Language attrition. Cambridge: University Press. 
Smith, N. J., & Kutas, M. (2015a). Regression-based estimation of ERP waveforms: I. The rERP 

framework. Psychophysiology, 52(2), 157 168.  
Smith, N. J., & Kutas, M. (2015b). Regression based estimation of ERP waveforms: II. Nonlinear 

effects, overlap correction, and practical considerations. Psychophysiology, 52(2), 169-181. 
Steinhauer, K. (2014). Event-related potentials (ERPs) in second language research: A brief 

introduction to the technique, a selected review, and an invitation to reconsider critical periods in 
L2. Applied Linguistics, 35(4), 393-417.Swaab, T. Y., Ledoux, K., Camblin, C. C., & Boudewyn, 
M. A. (2012). Language-related ERP components. In S. J. Luck & E. S. Kappenman (Eds.), The 
Oxford handbook of event-related potential components (pp. 397 439). Oxford University Press. 

Tanner, D. (2019). Robust neurocognitive individual differences in grammatical agreement 
processing: A latent variable approach. Cortex, 111, 210 237. 
https://doi.org/10.1016/j.cortex.2018.10.011 

Tanner, D., Goldshtein, M., & Weissman, B. (2018). Individual differences in the real-time neural 
dynamics of language comprehension. In Psychology of learning and motivation (Vol. 68, pp. 
299-335). Academic Press. 

Tanner, D., Inoue, K., & Osterhout, L. (2014). Brain-based individual differences in online L2 
grammatical comprehension. Bilingualism: Language and Cognition, 17(2), 277 293. 
http://doi.org/10.1017/S1366728913000370 

Tanner, D., Mclaughlin, J., Herschensohn, J., & Osterhout, L. (2013). Individual differences reveal 
stages of L2 grammatical acquisition: ERP evidence. Bilingualism: Language and Cognition, 
16(2), 367 382. http://doi.org/10.1017/S1366728912000302 

Tanner, D., & Van Hell, J. G. (2014). ERPs reveal individual differences in morphosyntactic 
processing. Neuropsychologia, 56, 289-301. 

Tremblay, A., & Baayen, R. H. (2010). Holistic processing of regular four-word sequences: A 
behavioral and ERP study of the effects of structure, frequency, and probability on immediate 
free recall. In S. N. Wood (Ed.), Perspectives on formulaic language: Acquisition and 
communication (pp. 151 173). London: The Continuum International Publishing Group. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



GAM-BASED INDIVIDUAL DIFFERENCE MEASURES FOR L2 ERP STUDIES        33 
 

Tremblay, A., & Newman, A. J. (2014). Modelling nonlinear relationships in ERP data using mixed-
effects regression with R examples. Psychophysiology. http://doi.org/10.1111/psyp.12299 

Van Rij, J. (2012). Pronoun processing: Computational, behavioral, and psychophysiological studies 
in children and adults. PhD dissertation, University of Groningen. Retrieved from 
http://dissertations.ub.rug.nl/faculties/arts/2012/j.c.van.rij/ 

Wieling, M. (2018). Analyzing dynamic phonetic data using generalized additive mixed modeling: a 
tutorial focusing on articulatory differences between L1 and L2 speakers of English. Journal of 
Phonetics, 70, 86 - 116. 

Weber-Fox, C. M., & Neville, H. J. (1996). Maturational constraints on functional specializations for 
language processing: ERP and behavioral evidence in bilingual speakers. Journal of Cognitive 
Neuroscience, 8(3), 231 256. 

White, L. (2007). Some puzzling features of L2 features. In J. M. Liceras, H. Zobl, & H. Goodluck 
(Eds.), The role of features in second language acquisition (pp. 305 330). Mahwah, NJ: 
Lawrence Erlbaum. 

Wood S. N. (2017). Generalized Additive Models: An Introduction with R, 2nd Edn. Boca Raton: 
Chapman and Hall/CRC. 

Wood, S. N., Goude, Y., & Shaw, S. (2015). Generalized additive models for large datasets. Journal 
of the Royal Statistical Society: Series C Applied Statistics. 

6. Author Notes  
This research was supported by the Netherlands Organization for Scientific Research (NWO) under 
grant 016.104.602, awarded to M.S.S. We thank Jacolien van Rij and two anonymous reviewers for 
discussion and comments on previous versions of this paper.  

We declare no potential conflicts of interest with respect to the research, authorship, and/or 
publication of this article. Address reprint requests to: Nienke Meulman, n.meulman@rug.nl. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


