Parsing partially bracketed input

Martijn Wieling, Mark-Jan Nederhof and Gertjan van Noord
Humanities Computing, University of Groningen

Abstract

A method is proposed to convert a Context Free Grammar toekBr&ontext Free Gram-
mar (BCFG). A BCFG is able to parse input strings which argdrt or whole, annotated
with structural information (brackets). Parsing partiddfacketed strings arises naturally in
several cases. One interesting application is semi-autotn@ebank construction. Another
application is parsing of input strings which are first amed by a NP-chunker.

Three ways of annotating an input string with structure rinfation are introduced:
identifying a complete constituent by using a pair of rounackets, identifying the start or
the end of a constituent by using square brackets and igizngtithe type of a constituent by
subscripting the brackets with the type. If an input stringmnotated with structural infor-
mation and is parsed with the BCFG, the number of generates ppeees can be reduced.
Only parse trees are generated which comply with the inelicstructure.

An important non-trivial property of the proposed trangfiation is that it does not
generate spurious ambiguous parse trees.

1 Introduction

Natural language is highly ambiguous. If natural languagygences are parsed
according to a given Context Free Grammar (CFG), the humbparse trees
can be enormous. If some knowledge about the type and cateerdnwords
in a sentence is available beforehand, the number of pa¥es tran be reduced
drastically, and the parser will be faster. In this paper vasent a method to parse
partially bracketed input.

The method presented in this paper is useful for a numberfigient appli-
cations. One interesting application is semi-automagieliank construction. An-
other application is parsing of input strings which are frshotated by a syntactic
chunker.

In recent years much effort is devoted to the constructiotredbanks: sets
of naturally occurring sentences that are associated Wmin torrect parse. Typ-
ically, such treebanks are constructed in a semi-automatjcin which the sen-
tence is parsed by an automatic parser, and a linguist thectseand sometimes
manually adapts, the appropriate parse from the set of péosed by the parser.
If a sentence is very ambiguous this process is rather cusobver and time con-
suming. In our experience in the context of the constructibthe Alpino and
D-Coi treebanks (van der Beek, Bouma, Malouf and van Noofi22@an Noord,
Schuurman and Vandeghinste 2006), the ability to saide brackets (possibly
with the corresponding category) is a very intuitive anctefifze way to reduce
annotation efforts.

Below, we also introduce the possibility to annotate a se@avith an opening
bracket without a corresponding closing bracket, and varsa. This possibility

2 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

is motivated by the second application: parsing input thgire-processed by a
chunker. A chunker is an efficient program which finds ocaures of some syn-
tactic categories (typically noun phrases). If a reliabie &fficient chunker is
available, syntactic parsing can be faster by using thatlofin a preprocessing
stage. One common implementation strategy which goes lmaBamshaw and
Marcus (1995) is to use techniques originally developedf©06-tagging, and to
encode the start and end of chunks in the POS-tag inventoigh &hunkers are
able to detect where a chunks starts, or where a chunk endthebfact that the
beginning and the end of a chunk are supposed to co-occut inherent to the
technique, but is usually added as an ad-hoc filter on theututphe ability of
our method to allow independent opening and closing bradkethe input im-
plies that this ad-hoc filter is no longer needed. It remairtsetinvestigated if this
improvement has empirical benefits as well.

In the past, researchers have experimented with technighese pairs of
parentheses are used to group constituents of an inpugssich that fewer
parse trees are generated. In Pereira and Schabes (1992 as ®tolcke (1995)
a method is given to adapt an existing parse algorithm (@sigtside and Ear-
ley) in such a way that it works faster with input strings whiare annotated
with pairs of parentheses. In McNaughton (1967) and Knu#6T) features of
a parenthesis grammar are discussed where brackets actadde start and end
of every production ruleA — (a) . In their bracketed context free grammar,
Ginsburg and Harrison (1967) add additional informationshipscripting brack-
ets with unique indexes} - [1a]iandA —[2b] 2.

In our research, we have focused on finding an automatic fused¢o convert
a given CFG to a Bracket Context Free Grammar (BCFG). A BCHGpease the
same input strings as the CFG, but in addition these inpngstmay be annotated
in part or whole with legal structural information. By pradiiig knowledge about
the structure of an input string, the number of parse treasbeareduced and a
correct parse can be found earlier. A property of the progporsmsformation is
that it does not generate spurious ambiguous parse treds.piidperty is non-
trivial, as shall be shown later.

In the following section we indicate how an input string candmnotated with
structural information by using brackets. In the third &@ca recipe is given to
convert a CFG to a BCFG which can parse the annotated infngsti~eatures of
the recipe are discussed in section 4, before the conclisgiven in section 5.

2 Annotating an input string with structural information

In previous studies (e.g. McNaughton (1967) and Knuth ()P&ffuctural infor-
mation of the input string was added by placing a pair of betglaround each
constituent (a chunk) of the input string. Our method al$oned partly annotated
(incomplete) input strings:

(The cat) (has caught (a nouse)).

Parsing partially bracketed input 3

Three chunks can be distinguished herdhe cat, a nouse and has
caught a nouse.

Itis also possible that knowledge about the type of the clisipkesent (for ex-
ample a noun phrase or a verb phrad¢repr VP). It should be possible to store this
information, since more information about the structureymeduce the number
of possible parse trees. In our model we will indicate thestgpa chunk by sub-
scripting the brackets of the chunk with this type. This wifeds from Ginsburg
and Harrison (1967), in which each production rule contairgir of uniquely
indexed brackets{ — [1 . ..]1). Another difference is that in our annotation
method incomplete input strings are possible. Note that &aacket in a pair of
brackets must have the same subscript:

The cat (w has caught (np @ nouse)np) vp.

Besides allowing incomplete input strings, our method alkaws for inconsistent
input strings. In this case the number of opening brackets dot equal the num-
ber of closing brackets. We will use square brackets to atdithe start and/or the
end of a chunk individually[(and]). In this case information about the structure
of an input string is also present - although more limitechtivathe other case.
Note that it is possible that an opening square bracket afabang square bracket
may form a chunk, as is shown in the following inconsistent inguing:

The cat [y has caught [y a nouse].

In this case it is left undecided which pair of brackets formhank. When cer-
tainty exists about the beginning and end of the same chtiiskbeétter to use the
round brackets to indicate all knowledge about the strectur

Three methods can be used to indicate knowledge about thetise of an
input string:

e Define a complete chunk: ...)
e Define the start and/or end of a churfikand]

e Define typed ofachunk] 4,1 4,(4...) 4
The three methods can be combined as can be seen in the exdmalole:
(The cat) [w has caught (np a nmouse) pp.
[wv (np The nmouse)np wal ked through [the barn].

It was mentioned earlier that each single bracket in a patypified brackets
should have the same subscript. It is also possible to sipbsarly one of the
brackets, after which (in a separate processing step) latikéts should be given
the same subscript. For this method it is necessary to find/bizch round brack-
ets form a pair. This can be realised in a straightforward. wayair of round
brackets is identified by matching an opening round bracktte nearest closing
round bracket, in such a way that the number of opening rouackiets equals the
number of closing round brackets between them.

In this study, we have restricted ourselves to allow onlydtrral information
for non-empty chunks. This decision will be treated in mos&ad in section 4.

4 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

3 Converting a CFG to a BCFG

In the previous section we indicated how structural infaforacan be added to an
input string by using brackets and subscripts. The follgpgtep is to convert the
original CFG to a grammar which can also parse the round amaredrackets (a
BCFG). Note that if the structure symbols are in the set ahieals of the original
CFG, other structure symbols should be chosen.

3.1 Ambiguity problems

A first approach to create the new grammar is to generate &br gaduction rule
inthe CFG,A — . . . , the following 11 production rules in the BCFGy:

A

S
I
SRR

hS

— N e

A

In this way all possible configurations of brackets are repnéed and no parse
trees will be generated which do not comply with the indidagé&ructure. The
following example illustrates this (the start symbokig

A — BC
A — CD
B — a
C — a
D — a

The input stringaa can be parsed in two ways with this grammar:
e A= BC % aa
e A= CD= aa

If it is known in advance that the secoads of type D, this can be indicated by

annotating the input string in the following wag:[p a. To parse this input string,

the following generated production rules@f are relevant (the other production
rules are left out for simplicity):

Parsing partially bracketed input 5

BC
D
a

A

OO QWe

a
a
[p a

The structure symbol can only be matched in the final prodoatile, therefore
the annotated input string can be parsed in one way ohl C D = a[p a.

By applying this naive conversion to generate the BCFG,pbissible that for
a given annotated input string a large number of spuriousgumohs parse trees
are generated, which map - when the brackets are removetie @amme parse tree
according to the original grammar. This is illustrated vitikb following CFG:

A — Aa
A — a

If the input string is[4 aa, the following generated production rules@f are
relevant:

A — A a
A — [A Aa
A — a
A — [A a

Figure 1 shows that the input strifigy aa can be parsed in two ways with the
BCFG, while only one parse tree exists for the unannotatpdtistring in the
original grammar. According t&'y more parse trees are generated than according
to the original CFG, which is of course an undesired property

The general problem is thét; does not fix in which production rule the square
bracket[or]) is matched. This problem can occur with typified bracketemvh
production rule of the same type as the bracket is traversdtiphe times before
the terminal is reached. For examplé:= B = C = A=t orA= B =
Ca= Aaf=1 af.Ifthetype of the (opening) bracket equalsthe bracket
can be matched at the first or at the final production rule anifipteuspurious
ambiguous parse trees are generated. If the brackets argpifad this problem
occurs when multiple production rules (non-terminals) taeeersed before the
terminal is reached. Forexampld:= B=C =t orA=aB=afC =
a Bt . Because the (closing) bracket can be matched at everyamotiAal, again
multiple spurious ambiguous parse trees are generated.

If round brackets are used, the ambiguity problem occurawumit rules are
traversed. If the grammar is converted to Chomsky Normaik-dhe problem

6 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

A A A
AN NN N
[A, A a A a A a
| N |
a [a a

Figure 1:Parsetreesfor input[4 aa and aa (left: BCFG, right: CFG)

with regard to the round brackets is solved, however thelprolwith the square
brackets still remains.

3.2 Matching brackets as soon as possible

The problem of the previous approach, was the existence bitarity in the mo-

ment of matching the brackets. A solution for this problenoiglefine exactly
when a bracket should be matched. In the following we wilegivconversion of a
CFG to a BCFG which enforces that brackets will be matchedas as possible.

3.2.1 Short introduction to the method

In the following method a large number of new production sitethe BCFG ()
are generated for each production rule in the CFG, basedegpasible structure
symbols. By using two variables(and s;) for each production rule idr, the
structure symbol expected at the stagf) @nd at the ends) of the current input
string are stored. Because it is not always possible to matoértain structure
symbol in a production rule, it is necessary to store for ezmtrterminal in the
right-hand side of the production the structure symbolk wihich these may start
and end. This is done by assigning to each non-terminal imidgi-hand side of
the production rule two variables, which therefore map ®léit side of the gen-
erated production rules. By using these variables it isreefibthat if a matchable
square bracket is not matched in a production rule, it camrad$é be matched in a
later stage in the same parse tree. If round brackets areatohed, they can not
be matched in a later stage as long as unit rules are encedn#emore in-depth
explanation will be given after the conversion scheme ioohiced.

When a specific bracket is expected as a start or end symbw ofirrent input
string, this is indicated by setting the value of the vara) or s() equal to this
bracket. If no structure symbol may be matched, the symli®used to indicate
this.

Parsing partially bracketed input 7

3.3 Conversion scheme CFG- BCFG

The following definitions are used with the conversion:
e N': the set of all non-terminals in the CFG
e T the set of all terminals in the CFG

G ={[asAe(NUe)}

O ={lasAe(Nue)}

Q={(a:Ae(NUe)}

O ={)arAe(NUe)}

.Qb:Q[UQ(U e
e Oy =0 U Ue

Note thatl’ must be different from the introduced structure symbolghil is not
the case, different structure symbols must be used.
In the BCFG, we add for each production rule of the CFG

A—Xi.. X,
with X; € {N U T}, new production rules
A(so,sh) = Y X| .. X! Y’
with

o (s0,80) € x Qy

X, eT= X! =X,
o X; € NéXi/:Xi(Si,Sé), (Si,Sé) € Qp X Qp
Ye{()[7[Aa(A7E}

YIE {) a] a] Av)AaE}

Where exactly one condition of 1. and one condition of 2. nadd.

For instance, to make sure an opening square bracket is etagaththe first
possibility, condition 1a. is used. Condition la. indicatlkat when an opening
square bracket has no type or a type corresponding to thentymroduction rule,
it must be matched becauges also equal to this bracket (see condition 2a. for the
closing square bracket case). Alternatively, if no streeeBymbol may be matched
at the start of a sub-string, condition 1h. is used. Condlitio. indicates that when
no structure symbol may be matched at the start of a certaistsing (5o equals
¢), this will hold becaus&” ands; must also equat (see condition 2h. for the
same case at the end of a sub-string). A detailed explanatiat conditions is
given in paragraph 3.4.

8 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

1. (a)S():[t/\tG{A,E}/\Y:SO
(b) 8069[\{[A,[}/\X1€N/\Y:E/\

S1 = 80
C) sop = t/\S/: ANt e A,E ANY =55 A
0
Y' =g

(d) S():(t/\SIOZ)t/\tG{A,E}/\XlGN/\
m>1AY =eANsy=sg

(e) 8069(\{(A,(}/\X1€N/\Y:E/\
S1 = S0

() so=(ensg#)eNte{A e} AX1ENA
Y=ecAs1 =59

(@) so=enX1 €T ANY =¢
(h) so=eNXi1 e NAY =cAs1=¢

2. @so=1ente{Ad e} ANY =g
O st e \{Ja,]}AXn e NAY = A
!

s, =8
(C) Séi)t/\SOZ(t/\tG{A,E}/\Y/:S/O/\
Y:SO

m>1AY' =ecAs), =5
@ s e \Da)IANXn e NAY =N
/

— o
Sm = So

A sh=)eNnsoF (e Nte{A e} ANXp €NA
Y =ens,, =s|
Q) sh=eNXne€TNY' =¢
(h) sh=eNXn e NAY =cNsl, =¢
An e-production rule 4 — ¢) in the CFG is converted tel(e,e) — < in the

BCFG. As mentioned earlier, we only allow structural infation for non-empty
chunks.

3.4 Explanation of the conversion scheme

For each production rulel of the CFG a number of new production rules are
generated in the BCFG' (because ofso, s5) € Oy x Q). For example, for a
non<-production rule of a CFG:

A —

the conversion t@- will generate at least 11 new production rules:

Parsing partially bracketed input 9

(LI
—_—
~—

~

1a

—_——

1a

e
:b\/\—/v

~—

A

~— -

L A
S G

b

~~Nmm e —_—_—
— e) T

]

]
]
)
)

kS

A

S g

Because non-terminals may exist in the right-hand sideeptbduction ruled, it
is possible that there are more production rules generated.is discussed later.

The large number of generated production rules is necedsacause there
must exist a production rule for each structure symbol incwlii can be matched.
If more non-terminals are present in the CFG, the numberratsire symbols
also increases (and this results in a larger grammar). Alysinaf the number of
generated production rules, based on the original progluctiles, the number of
terminals and non-terminals in the CFG is given in a latetisec

The conversion scheme enforces that terminals and noriA@isi{X;) remain
in the same place in the generated production riey, s;,) as in the original
production ruleA.

The variables;; ands(indicate which structure symbols are expected at the
start and the end of the current input string. The variableand Y’ indicate
which structure symbols must be matched at the start ane &trith of the current
production rule.

As discussed earlier, ambiguity with respect to matchirghttackets can oc-
cur with square brackets and round brackets in combinatidnumit-rules. This
ambiguity is prevented by matching the structure symbokoas as this is possi-
ble. The values o¥” andY” will therefore correspond when this is possible with
so andsy,.

In the next two paragraphs the influencesgfands{, on Y ands; will be
discussed. The situation faf’ and s/, is analogous, instead of the conditions
of 1. the conditions of 2. will be used. The relevant conditi@f the conversion
scheme are mentioned at the end of each paragraph.

3.4.1 The influence ofs, and s onY

When a square bracket without a type is expectgd=£ [), this symbol can be
matched in every production rule and thus the valu® ohust equaky. This is
also the case if a typified square bracket is expected wittpa tprresponding
with the current production ruley = [4 (13).

When a pair of round brackets without a type is expectgd= (andsj, =)),

10 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

these structure symbols can be matched in every productienif the production
rule is a unit-rule or starts and/or ends with a terminal, whkies ofY” andY”’
must equal the values of, andsj. If this is not the case, the values BfandY”
must equal the values af ands{, or must both be equal to. Since the values
of 5o ands{, do not have to apply to the same chunk and can be matchedteger,
values ofY andY” can also be equal to. The same arguments can be applied
for a situation in which a pair of typified round brackets ipegted with a type
corresponding to the current production rulg~ (4 andsj =) 4 (1c,d).

If no structure symbol can be matched,= ¢, Y is left out (1g,h).

Finally, if a typified bracket is expected with a type not esponding to the
current production rule, it is not possible to match thisigture symbol in the
current production rule. This is also the case if a matchapéming round bracket
is expected without the matchable closing round brackethdfright-hand side
of the production rule does not start with a terminal, thaugadf Y must equal
¢ (1b,e,. In the other case no production rule is generated, bedaesypified
bracket cannot be matched.

3.4.2 The influence ofsy and s{, on s;

If no structure symbol can be matched, the current inputgtrimay not start with

a structure symbol. If the right-hand side of the currentpigiion rule A starts
with a non-terminalB, the start ofw is parsed with the production rule belonging
to B. Sincew may not start with a structure symbol, the production rul&ahay
not start with a structure symbol. Therefore the value,ahust be equal te (1h).

If a typified bracket of a different type thatis expected at the start of, this
structure symbol cannot be matched in the current produdtile. This is also the
case if a matchable opening round bracket is expected withmatchable closing
round bracket. In these cases the valuggfiike in the previous situation, must
be passed on t® (s; = sg) where the structure symbol can possibly be matched
(1b,e,).

If a pair of round brackets can be matched and the right-haledo$ the non-
unit production rule starts and ends with a non-terminad, &lso possible to pass
on the round brackets. In that situatien must be equal ta,. This has to be
possible, becausg ands(, can apply to different chunks and therefore should be
matched later. Only in the previous three situations, theevaf s, is specified. If
a structure symbol is matched in the current production thievalue ofs; is free
(1a,0.

The value of the variablg, is free if the right-hand side of the production rule
does not consist of one element (being a non-terminal). Hheeg of the other
variabless; ands for 1 < i < m are always free.

3.4.3 Free variables

If the value of one or more variables @nds?) is free, this results in the generation
of multiple production rules for the sam&s, s,). For every possible combina-

Parsing partially bracketed input 11

tion of variable values; ands; a production rule must exist. This is illustrated by
the following production rule (the complete CFG consistsaaf non-terminals):

A — Bb
We limit ourselves to the generated production rules4(fr 5,). This means that

at the beginning a typified bracket is expected unequal todhent type B # A)
and at the end no structure symbol may be present:

A([B7E) - B([B7E) b
A([Bvs) - B([Bv)) b
Al B,e) — B(ls,)a)b
Al B,e) — B(ls)B)b
A(B,e) — B(s])Db
A(B,e) — B([s/]a)b
Al B,e) — B(lslnp)b

If there are more free variables presestdr s.), this results in a significant in-
crease of the number of production rules@f This will be explained in more
detail later.

Several examples of parsing an annotated input string byfe(B&re given in
appendix A (downloadable from: http://www.martijnwiediml).

3.5 Converting generated parse trees

After the annotated input string has been parsed accorditigetBCFG, the final
step is to convert the BCFG parse trees to CFG parse trees.cahibe realized
very easily by applying the following two steps (this is allkastrated in figure 2):

e EveryA(s,, s;) is replaced byd

o All structure symbolsY ## ¢) are removed

3.6 Properties of the BCFG

In this paragraph we show that the BCFG can parse all legaifptated input
strings. A legally annotated input string means that thgigtea parse tree in the
CFG for the unannotated input string, which adheres to thetsire indicated by
the annotation. We also show that no extra ambiguity is chbgehe annotation
of the input string with structural information.

The conversion scheme enforces that terminal and non+tairsymbols re-
main in the same order as in the CFG. The only difference mitlee CFG and
the BCFG is therefore the use of structural information. Wérefore will focus
on this aspect in the following.

12 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

[Ael,) B(ee)| A B
AN
a I, b a b

Figure 2:Conversion of generated parse trees (left: BCFG, right: CFG)

e Property 1. The BCFG can parse all input strings which can be constducte
with the CFG with the addition of legal structural infornaati

Proof: The conversion scheme stores (by usipgndsg) the structure symbols
with which the current input string may start and end. BeeanfS(s, s;) €
Qp, x Qp all combinations of matching structure symbols are prefmmevery
production rule and the current input string may therefdaet and end with all
possible structure symbol combinations. Becausésgfs;) € Q, x 4, the
non-terminals (parsing sub-strings) on the right-hand seicevery production rule
may also start and end with all possible structure symboll@oations. The only
exception is that; ands,, may depend oRr, andsj, respectively, but this is only
the case when they indicate structure symbols which arectagat the start or
end of the current input string (and for this case all possédplanations were
possible).

Since a square bracket or a pair of round brackets can be etbtcity if it does
not have a type, or has a type corresponding with the currediugtion rule (see
condition a and c), only input strings can be parsed whiclelzdegal annotation.

e Property 2: The BCFG does not generate CFG-equivalent parse trees for a

input string.

Proof : CFG-equivalence of two BCFG parse trees means that if bGf@Bparse
trees are converted to CFG parse trees (see the previougrgaina these parse
trees are identical.

Assume there exist two BCFG parse trees for a certain arawbiiaput string
which are CFG-equivalent. In that case, it is hecessaryalsatucture symbol is
present in different places in the parse tree. This mean# tmaist be possible to
ignore a structure symbol when it can be matched first andesulesntly match it
in a later stage (without parsing terminals in between).

To ignore a matchable opening square bracket, the corrdsppvariable §,)
must be equal te (see condition g and h). This resultssn if it is present, being
equal tos. As a consequence, the valsg of the production ruleX; will also

Parsing partially bracketed input 13

be equal tee. This process will repeat itself. To parse the input stringectly,
a terminal must be matched (see condition g). This showsttighot possible
to ignore a matchable opening square bracket and match iaieastage, before
matching a terminal.

The case for a matchable closing square bracket is identvithl s, replaced
by s{, s1 by s/, and Xy by X,,,.

The same arguments (fep and s;) hold for a pair of round brackets if the
right-hand side of the production rule consists of one revminal. If this is not
the case (condition d) round brackets can be ignored, buheaer be matched
again defining the same chunk. No production rules are gttkvehere a single
round bracket can be matched.

As we have shown, it is not possible to ignore a matchabletsire symbol and
match it in a later stage without matching a terminal in beteT his contradicts
our assumption and we can conclude that there are no CFGadeuii parse trees
generated for a certain annotated input string.

3.7 Number of generated production rules

The BCFG will consist of a large number of production rulesalildepends on
the number of non-terminalsV) in the CFG, the number of non-terminalg)(
in the right-hand side of every single production rule araltifpe of X; and X,,
(terminal or non-terminal). Aa-production rule in the CFG will only generate a
single production rule in the BCFG.

Four other cases can be distinguished:

1. X; andX,, are both terminals
2. X, is aterminal and¥,, is a non-terminal, or vice versa
3. X7 andX,, are both non-terminals and > 1

4. X, is anon-terminal aneh = 1

When a production rule only consists of terminals, exactlypdoduction rules will
be generated in the BCFG. In this case no ambiguity probléstseand the same
production rules are generated as oy (section 3). WherZ non-terminals are
present in the production rule (not at the start and the eéxiree variables are
present{; ands’). Every free variable ha&V + 3 possible values ;| or |2 |).
The number of generated production rules in the BCFG for dyetion rule in the
CFG which starts and ends with a non-terminal is thereforergby the following
formula:

Co=11-(2N +3)*? (1)

The total number of generated production rules in the BCHG@ faroduction rule
of the CFG beginning with a terminal and ending with a nomrieal (or vice

14 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

versa) is given by the following formula
C1 = (22N 4 27) - (2N + 3)(34~D 2)

For a production rule of the CFG which starts and ends withrateominal and
m > 1, the following formula is used to calculate the number ofeyated pro-
duction rules in the BCF&

Cy = (44N? + 108N + 67) - (2N + 3)?4=2) (3)

When a production rule of the CFG consists only of one nomiteal (m = 1), the
total number of generated production rules in the BCFG ismlyy the following
formulat:

C3 = 44N? + 108N + 65 (4)

For Cy, C1, Cy and(Cs it is clear that the number of generated production rules
equalsO(N?%). The total number of generated production rules in the BCFG
based on a CFG consisting of

e p production rules wher&(; and X,,, are both terminals

q production rules wheré(; is a terminal andX,,, is a hon-terminal (or vice
versa)

r production rules wher&’; and X,,, are both non-terminals and > 1

s production rules wher&(; is a non-terminal aneh = 1
e t e-production rules

thus equals:
IGl=p-Co+q-Cr+r-Co+s-Cs+t

If the original CFG is converted to Chomsky Normal Form, tight-hand side of
every production rule in the CFG consists of one terminalar hon-terminals.
In this casey, s andt equal O, the value of equals 0 forC, and the value o
equals 2 foiCs. The total number of generated production rutésthen equals:

|GC|:p'CO+T'CQ

with Cop = 11 andCs = (44N? + 108N + 67) - (2N + 3)%. The number of gen-
erated production rules ifi. thus has a polynomial degre@(N*).

If the CFG is not in Chomsky Normal Form, but the highest numdke
non-terminals in the right-hand side of a production rulghe CFG is known
(Zmax), the number of generated production rules also has a poligiaegree,
O(IN?Zmax),

1A precise calculation is given in appendix B (downloadalert: http://www.martijnwieling.nl)

Parsing partially bracketed input 15

4 Discussion

We did not investigate in what way the size of the BCFG infle=rtbe time needed
to parse an input string. Both the Earley-algorithm and tN&<&@lgorithm have
a time complexity depending on the size of the grammar anctiie will be
influenced. However, it is likely that new production rulesde generated on the
fly and thus will alleviate the problem.

When it is undesirable to use a BCFG with a large number of yrtidn
rules, it is also possible to use the ambiguous conversiogrnse. After the parse
trees have been generated according to this BAF&With the addition that-
production rules remain the same and do not get any strusyunbols), the parse
trees have to be converted to CFG parse trees by removingrtituse symbols.
In a subsequent sweep duplicate parse trees can be then desdm

In our study we only allow structural information for non-pty chunks. If
structural information is also desired for empty chunkg tonversion scheme
cannot be adapted very easily. This is illustrated with tifving example. In
the production ruled(so, ;) — X1(s1, s1) Xa(s2, s4) the value ofX; equals:.

A square bracket without a type can be matched in the prasuctile of X (if
so = [), but it is also possible to match the square bracket in thdymtion rule
X5 while not matching it inX; (s; = ¢). Since the value of, does not influence
the value ofsy, spurious ambiguity can occur here.

5 Conclusion

We showed how an input string can be annotated with strudnfamation and
subsequently can be parsed with a BCFG. A conversion schesgwen to con-
vert a CFG to a BCFG with the important property that the t@syBCFG does
not generate spurious ambiguous parse trees.

If an input string is parsed with a CFG a large number of parsestcan be
generated. The number of parse trees can be reduced by timptha input string
with structural information, parsing the annotated ingdtihg with the converted
CFG (the BCFG) and converting the resulting BCFG parse te@é€3FG parse
trees. The number of parse trees is only reduced when the GRtins parse
trees for the original input string which do not comply to thdicated structure
(these parse trees will not be generated by the BCFG).

References

Ginsburg, S. and Harrison, M. A.(1967), Bracketed confeet-languages.).
Comput. Syst. Sci. 1(1), 1-23.

Knuth, D. E.(1967), A characterization of parenthesis taages)nformation and
Control 11(3), 269—-289.

McNaughton, R.(1967), Parenthesis grammaosrnal of the ACM 14(3), 490—
500.

Pereira, F. and Schabes, Y.(1992), Inside-outside reastim from partially
bracketed corpordroceedings of the 30th annual meeting on Association

16 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

for Computational Linguistics, Association for Computational Linguistics,
Morristown, NJ, USA, pp. 128-135.

Ramshaw, L. and Marcus, M.(1995), Text chunking using fansation-based
learning,in D. Yarovsky and K. Church (edsProceedings of the Third
Workshop on Very Large Corpora, Association for Computational Linguis-
tics, Somerset, New Jersey, pp. 82-94.

Stolcke, A.(1995), An efficient probabilistic context-€r@arsing algorithm that
computes prefix probabilitie€§omput. Linguist. 21(2), 165-201.

van der Beek, L., Bouma, G., Malouf, R. and van Noord, G.(2008e Alpino
dependency treebankpmputational Linguisticsin the Netherlands.

van Noord, G., Schuurman, |. and Vandeghinste, V.(2006){&&yic annotation of
large corpora in STEVINLREC 2006, Genua.

Parsing partially bracketed input 17

A Parsing examples of a BCFG

The CFG which is used in this appendix (unless stated otkejvaionsists of the
following production rules (the start symbol45:

A — BB
A — B
A — aa
A — a
B — a

Since the total number of generated production rules in BE® equal®2491 +
4574+ 11+ 11+ 11 = 22981 in this case (see section 3 and appendix B), only the
relevant production rules will be shown for each (annotgirgolt string below.

A.1 Aninput string without structure symbols

The following generated production rules are relevanthierihput strincpa:

A(e,e) — B(g,e) B(e,e)

Only if every (s;, s;) equals(e,), no structure symbols will be matched. As in
the CFG, two possibilities are available to parse the inpingaa:

o Ag,e) = aa

e Ae,e) = Ble,e) B(e,e) = aa

A.2 Aninput string starting with a structure symbol

The following generated production rules are relevanthierihput strind aa:

A(l,e) — [Bl(ee) B(ee)
Ale,e) — B(e,e) B(e,e)
Al,e) — [aa

Bl,e) — [a

B(e,e) — a

It is clear that the square bracket has to be matched as sqmssible to be able
to parse the input string (sef¢, ¢)).

Since the addition of this structure symbol does not give extya informa-
tion about the structure (the complete input string is asvaychunk), again two
possible parses exist:

e A([,e)=[aa

e A([,e) =[B(e,e) Ble,e) = [aa

18 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

A.3 Aninput string with a typified structure symbol

The following generated production rules are relevantlierihput strind 5 aa:

A([Bve) - B([B,E) B(E,E)
B([B,e) — [B a
B(e,e) — a

The use of this structure symbol gives additional informagbout the structure,
therefore only one possibility remains to parse the inpirigt

e A([g,e) = B([B,¢) B(e,e) = [p aa

A.4 Aninput string with round brackets

The following generated production rules are relevanttierihput string a) :

A(())) — (Blee))
Ale,e) — B(g,e)
Al()) — a)
B(g,e) — a

As well as for a matchable square bracket, the round pair adkats has to be
matched as soon as possible (since= 1).

The annotation with round brackets does not give any exfaarimation about
the structure of the input string, therefore again two gdegarses remain:

* A((,))=(Bee)) = (a)
o A(())=(a)

A.5 Aninput string with typified round brackets

The following generated production rules are relevantterihput strind z a) g:

A((B))B) — B((B,) B)
B((s,)B) — (B a) B

The annotation with typified brackets gives extra informathbout the structure
of the input string and therefore only one possible parseanesn

e A((B))B)=B((B)B)=(Ba)5B

A.6 Aninput string with two pairs of round brackets

(B a) g The following generated production rules are relevant Far input
string(a)(a):

Parsing partially bracketed input 19

A()) = B((,)) B(())
A(,)) — (Ble))B((e))
B((,)) — (a)

In this case s > 1) the round brackets cannot be matched immediately. Since
round brackets can only be matched as a pair, it is not pessibfjet a correct
parse by using the second production rule and thereforesimijfe correct parse
remains:

o A((,))=B(())B((,))=(a)(a)

A.7 A CFG with an e-production rule

In this example a new CFG is used (the start symbdl)is

Sejlov e e
Ll
oo o

The input stringb can be parsed in three ways with this CFG:
e A=D
e A= BB=be
e A= BB=¢bh

The following generated production rules are relevanttierihput strind g b) 5:

A((B,)B) — B((B,€) B(e,) B)
A((B,e — B((B,) B) B(e,¢)
A(e,)B) — B(e,e) B((B:) B)
Ble,e) — €
B((Ba)B) - b

It is not possible to get a legal parse by using the first prodncule, since round
brackets can only be matched as a pair. Therefore the ingug $tz b) 5 can
only be parsed in two ways:

o A((p.e)= B((B,) B) B(e,e) = (5b) B
b A(E,)B)éB(E,E) B((Bv)B>;>(Bb)B

20 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

B Calculation of the number of generated production rules

In this appendix the calculation of the number of generateduyution rules in the
BCFG will be given for three types of CFG production rules.

B.1 Calculation of C;

In this calculation we assume that the production rule of @& starts with a
non-terminal and ends with a terminal. The calculation fpraduction rule which
starts with a terminal and ends with a non-terminal is analisg

If Z non-terminals are presentin the production ralé,— 1 free variables are
present §; ands;), because only; depends on (in the reversed situatiost,,
depends ors;). The number of generated production rules based on a produc
tion rule A of the CFG depends on the possible values©fs;, s; and the free
variables.

In the table below all possible combinations:gf s, ands; are shown together
with the total number of generated production rules for eamhbination. This
number is calculated by multiplying the number of possildties ofsy, s, and
s1. Note thaf y equals \ {[4,[}. The number of possibilities fdrx is thus
N —1.

so | 84, | s1 | #production rules
() Qp 2N + 3
(A)A Qp 2N + 3
Q[1a] so N+1
Q(& So N =+ 1
[] Qp 2N + 3
[lal 2N + 3
[IS Qb 2N +3
[a |1 Q 2N + 3
[a|la| 2N +3
[a e Qp 2N + 3
[x] 50 N -1
[x|]a]|so N -1
[X 9 S0 N -1
3] S0 1
9] A S0 1
€ € S0 1
22N + 27

The total number of generated production rules without¥eg&ables is22 N +27.
As noted earlier, the number of free variable8%— 1 and each free variable has
2N + 3 possible values. The total number of generated productitas tis thus
given by the following formula:

C1 = (22N 4 27) - (2N 4 3)(32-D

Parsing partially bracketed input 21

B.2 Calculation of Cy

In this case we assume the production rule of the CFG staditerads with a non-
terminal andn > 1.

If Z non-terminals are presentin the production r@lé,— 2 free variables are
present §; ands}), s; ands/, depend orsg ands{, respectively. The number of
generated production rules based on a productionAuté the CFG depends on
the possible values @), s, s1, s;,, and the free variables.

In the table below all possible combinationsf s, s ands/,, are shown
together with the total number of generated productiorsrideeach combination.
This number is calculated by multiplying the number of pblesialues oy, sj,
s; ands),. Note thaff x equals® \ {[4,[} and] x equalsty \ {] 4,] }. The
number of possibilities for bothx and] x is thusN — 1.

so | Sh | s1 | Sk, # production rules
() O | Qp AN? +12N +9
(A)A Q| Qp AN? + 12N +9
Q Q) S0 5/0 N2 +2N +1
Q|1 so | Qp 2N? +5N +3
Q(] A S0 Qb/ 2N2 + 5N + 3
Q(] X So 86]\72 —1
Q | e so | s N +1
[Q | | s 2N?% £ 5N +3
[1 O | Qy 4N? + 12N +9
[lal | Q 4N? + 12N +9
{] x gb sé) 2N2 + % -3
€ b | S 2N +3
[4 Q) Qp Sg 2N2 £ 5N +3
[a]] Q| Q 4N? + 12N +9
[allal % | Q% 4N? + 12N +9
{ A] X gb Sé) 2N2 + x -3
Al e b | S 2N +3
[X Q) S0 Sg]\72 —1
[X] S0 Qb/ 2N2 +N-3
[X] A S0 Qb/ 2N2 + N -3
{ X] X S0 Sé) N2 — 2% + i

x | € So | s —

5 Q) S0 sg N +1
€] so | Qp 2N +3
3] A So Qb/ 2N +3
9] X S0 56 N -1
€ € so | s 1
44N? 4 108N + 67

The total number of generated production rules without faéables is44N?2 +
108N + 67. As noted earlier, the number of free variable8i5— 2 and each free

22 Martijn Weling, Mark-Jan Nederhof and Gertjan van Noord

variable ha2 N + 3 possible values. The total number of generated production
rules is thus given by the following formula:

Cy = (44N? 4 108N + 67) - (2N + 3)24-2)

B.3 Calculation of C3

In this case we assume the production rule of the CFG cordistssingle non-
terminal (n = 1) and therefore no free variables are presenands!,, depend on
so andsj, respectively.

The number of generated production rules based on a productie A of the
CFG depends only on the possible values®fs, s1, s,,,.

In the table below all possible combinationssf s{,, s; ands,, are shown
together with the total number of generated productiorsrffdeeach combination.
This number is calculated by multiplying the number of pblesialues ofy, s,
s1 ands),. Inthe table[x equals; \ {[4,[} and] x equals®y \{] 4,] }.
The number of possibilities for bofhy and] x is thusN — 1. With sq = (4 and
sy =) + (line 3 in the table) all combinations af ands{, are meant excluding
(s0,s0) = ((,)) and(so,s;) = ((4,) a). The number of possibilities is thus
(N+1)-(N+1)—2.

Parsing partially bracketed input 23

so | sh | s1 | Sk, # production rulesg
() [y AN? +12N +9
(A)A Q| Qp AN? + 12N +9
(+) + S0 S/O]\72 +2N —1
Q|1 so | Qy 2N2% + 5N +3
Q(] A S0 Qb/ 2N2 + 5N + 3
Q] X S0 56 N2 -1
QE € so | s N +1
[Q | | s 2N2 £ 5N +3
[1 Q| Q 4N? + 12N +9
[lal | Q 4N? + 12N +9
{] x gb sg) 2N?2 + N —3
€ b | So 2N +3
[4 Q) Qp 86 2N2 £ 5N +3
[A] Q| Qp AN? + 12N +9
[allal % | Q% 4N? + 12N +9
{ A] X Qb Sg) 2N2 + N -3
A | € Q| s 2N +3
[X Q) S0 86]\72 —1
[X] So Qb’ 2N2 + N -3
[X] A S0 Qb/ 2N2 +N-3
[X] X S0 S/O N2 — 2N + 1
[X 9 S0 56 N -1
€ Q) | so | s N+1
€] so | Qu 2N +3
€ 1a | so | Qv 2N +3
9] X S0 S/O N -1
€ € so | S 1
44N? + 108N + 65

Because no free variables are present, the total numbemefrated production
rules equals:

Cs = 44N? 4+ 108N + 65

Note thatC3 has two production rules less théh (without taking free variables
into account), because in this case round brackets must tohetbadirectly when

this is possible. In the calculation 6f, it was not obligatory to match the two
possible pairs of matchable brackets, thus explainingvteeeixtra possibilities in

Cs.

