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Distance over Time in a Maximal Sprint: Understanding Athletes’ Action 12 

Boundaries in Sprinting 13 

The present study examined the kinematics of maximal effort sprint running, mapping 14 

the relations among a person's maximal running speed, maximum running acceleration 15 

and the distance coverable in a certain amount of time by this person. Thirty-three 16 
participants were recruited to perform a simple sprint task. Both forward and backward 17 

running were considered. Participants’ position, velocity and acceleration data were 18 

obtained using a Local Positioning Measurement system. Participants’ speed-19 
acceleration profiles turned out to be markedly non-linear. To account for these non-20 

linear patterns, we propose a new macroscopic model on the kinematics of sprint 21 

running. Second, we examined whether target distance was of influence on the 22 
evolution of participants’ running speeds over time. Overall, no such effect on running 23 

velocity was present, except for a ‘finish-line effect’. Finally, we studied how variation 24 
in individuals' maximum running velocities and accelerations related to differences in 25 

their action boundaries. The findings are discussed in the context of affordance-based 26 
control in running to catch fly balls. 27 
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Introduction 30 
Will he be able to make that catch? Spectators of baseball games, for instance, might watch a 31 
running outfielder with excitement, eager to find out the answer to this question. Will he be 32 
able to reach the ball before it hits the ground? Given his abilities, will the outfielder have 33 
enough time to reach the location where the ball will land? Expressed in this way, it is clear 34 
that the affordance of interceptability should be captured by the relations among the 35 
outfielder’s running abilities, the distance to be covered and the time before the ball hits the 36 
ground (Oudejans et al., 1996; Postma et al., 2018; Steinmetz et al., 2020). The present 37 
contribution addresses these relations. More specifically, we ask the question of how much 38 
time is needed to cover a certain distance (or, alternatively, how much distance can be 39 
covered in a certain time), and how this is related to the maximum running speed and running 40 
acceleration that a person can attain. The issue is broader than situations of interception of 41 
projectiles such as balls: think of examples such as crossing streets (Oudejans et al., 1996) 42 
and catching busses. What all these situations have in common is that they all revolve around 43 
the issue of being at some place in the right time or trying to avoid this.  44 
 45 
The issue of what determines the maximum distance that can be covered in a fixed time has 46 
been addressed primarily in studies into fly-ball catching. The results from these studies 47 
(Fajen et al., 2011; Oudejans et al., 1996; Postma et al., 2018) seem to suggest that it is not a 48 
person's maximum speed nor his or her maximum acceleration per se that determines the 49 
action boundary of running. For example, Oudejans and colleagues (1996) determined the 50 
boundary between catchable and uncatchable fly balls (or fly balls judged as such). In their 51 
analyses, distance-over-time (i.e. required velocity) and distance-over-time-squared (i.e. 52 
required acceleration) better captured the observed boundaries than distance did, whereas the 53 
fits based on these velocity and acceleration measures were of similar quality. Fajen et al. 54 
(2011), in a follow-up on the Oudejans et al. (1996) study, introduced an alternative to the 55 
required-velocity measure. They determined, per participant, at each point in time the greatest 56 
distance that the participant had covered. They used this to compute, for each trial, the 57 
difference in the time needed to cover the distance to the ball’s landing location and flight 58 
time of the ball, which was called ‘time-to-spare’. Using this time-to-spare as a basis for 59 
drawing the boundaries between catchable and uncatchable balls led to similar results as 60 
using required velocity (for the conditions that were compared, see Fajen et al., 2011). 61 
Finally, Postma and colleagues (2018) used the maximum distance that a participant had been 62 
able to cover during the flight time of the balls (which was roughly constant in their 63 
experiment) to characterize the boundary between catchable and uncatchable fly balls. Their 64 
analyses showed that this ‘locomotor range’ led to better fits than required velocity or 65 
required acceleration. Taken together, these studies indicate that the distance that players can 66 
run in a certain time does not seem to be determined exclusively by either the maximum 67 
velocity or the maximum acceleration that they are able to reach. Still, both variables seem to 68 
play a role in defining this maximum distance.  69 
 70 
Already in 1927, Hill and colleagues studied the dynamics of sprint running, specifically in 71 
the context of athletics (Furusawa et al., 1927; Hill, 1927). Hill and colleagues derived a 72 
mono-exponential relationship that described the velocity-time relation of an athletes’ center 73 
of mass in maximal-effort sprinting. From their model it is predicted 1) that maximal 74 
acceleration is seen right at the start of the run and 2) that an inverse linear relationship exists 75 
between running speed and acceleration. While proven effective for athletics, Hill’s 76 
characterization of sprint running seems not readily applicable to the context of locomotor 77 
interception tasks. First, because agents in locomotor interception tasks are typically unaided 78 
by starting blocks and secondly because the direction of motion is not always known a priori 79 



(e.g., in baseball, an outfielder does not know which way to run until the ball is hit). We 80 
expect that this will mean that players will not reach their maximum acceleration 81 
instantaneously but probably somewhat later in the run. The implication of this would be that 82 
the relation between acceleration and velocity, when asking players to run at their maximum 83 
abilities, will not be entirely linear either (we expressly investigate this below). Furthermore, 84 
some interception tasks might require agents to run in other directions than the forward-85 
direction. Running backwards to intercept a ball or an opponent is common in sports like 86 
soccer, basketball, and football but is not explicitly covered by the Hill model. Finally, the 87 
task ecology of the aforementioned sports settings is different from athletic sprinting. Indeed, 88 
in many team sports, sprints are typically short and explosive; seldomly do athletes sprint for 89 
hundred meters or more. This difference in task (ecology) might impact the way they cover a 90 
certain distance to make an interception. Thus, to characterize the action boundaries in 91 
interceptive tasks, further investigation into the macro-dynamics of running is required – for 92 
short and long distances, running backwards and forwards. 93 
 94 
To map the relation among maximum velocity, maximum acceleration, and the distance 95 
coverable within a certain timeframe, we designed a simple sprinting experiment that was 96 
general enough to shed light on agents’ action boundaries for various interceptive tasks, yet 97 
specific enough to represent those tasks. We collected data of participants performing 98 
maximal-effort sprints. No starting blocks were used, and we examined different modes of 99 
locomotion (forwards and backwards) and different target distances. As a first objective, we 100 
set out to examine whether an inverse linear relationship was indeed apparent for sprinting in 101 
the forward direction. The results show that maximal running speed is non-linearly related to 102 
acceleration in the context of the current sprinting task. This was the case for all target 103 
distances (7.5 meters – 60 meters). To account for these non-linear patterns, we propose a 104 
new macroscopic model on the kinematics of sprint running. This new model also explicitly 105 
covers the macro-dynamics of backward sprinting, a mode of locomotion common in many 106 
(sports related) interceptive tasks. Model performance is evaluated for both forward sprinting 107 
and backward sprinting. We show that our alternative model provides an accurate 108 
characterization of the dynamics of running. As such, it shows to be promising for 109 
understanding agents’ action boundaries in various interceptive tasks. 110 
 111 
Methods 112 
Participants  113 
Thirty-three people (30 men and 3 women) participated in this study. On average, 114 
participants were 21 years old (SD = 1.2). Participants were healthy individuals and reported 115 
no injuries that could affect their performance during the experiment. All participants had 116 
prior experience with running on artificial grass, for example in the context of (recreational) 117 
soccer or field hockey. Prior to the experiment, all participants were informed about the 118 
procedure of the experiment both in writing and orally. The experiment was approved by the 119 
Ethics Committee of the Center for Human Movement Sciences (University Medical Center 120 
Groningen, the Netherlands), and the protocol was in accordance with the Declaration of 121 
Helsinki.  122 
 123 
Setup and apparatus 124 
The experiment took place on artificial turf at one of the practice fields of a professional 125 
soccer club (FC Groningen, The Netherlands). Participants carried out their sprints in 126 
(randomized) groups of three to six people. Participants were all assigned an individual lane. 127 
Every lane was exactly 5 meters wide. Pylons were placed along the long side of the lanes to 128 
demarcate different target distances: 3.75, 7.5, 15, 30 and 60 meters. The starting line was the 129 



same over all participants and trials and was set at 0 meters. Right behind the starting line, at 130 
the centerline of every lane, a pylon was positioned at minus one meter. 131 
 132 
Position data were recorded using the Local Positioning Measurement (LPM-) system 133 
(Inmotio Object Tracking B.V., Amsterdam, The Netherlands). Position data were obtained 134 
with a sample frequency of 62.5Hz. Two video cameras recorded the experiment: One 135 
camera provided close-up footage of the starting line, the other captured the entire field. The 136 
camera that made close-up footage of the field was used to record the starting signal for later 137 
analysis. Both cameras were Full-HD and recorded the experiment at 30Hz.  138 
 139 
Design 140 
The experiment had a repeated-measures, block-randomized design (4 conditions × 4 targets 141 
× 2 repetitions). Participants performed a total of 32 maximal-effort sprints over four 142 
different conditions. In the forward-condition participants were required to cover different 143 
distances (7.5, 15, 30 and 60 meters) as fast as possible, sprinting forwards. In the backward-144 
condition participants were again required to cover different distances (3.75, 7.5, 15 and 30 145 
meters1), however they were now required to do so sprinting backwards. Participants also 146 
performed a ‘compulsory-turn condition’ and an ‘optional-turn condition’. However, these 147 
two conditions will not be considered for the present contribution.  148 
 149 
Procedure 150 
The conditions were presented in a fixed sequence: Participants started out with trials from 151 
the forward-condition, followed by trials from the backward- and the compulsory-turn 152 
conditions to finally perform the last eight trials from the optional-turn condition. Trials from 153 
the backward- and the compulsory-turn condition were intermixed and presented in 154 
alternating order. For the backward-condition, participants were instructed to keep running 155 
until they had the designated finish pylons in their (peripheral) sight, this was to motivate 156 
participants to keep up their efforts until they had actually reached the finish line.  157 
 158 
For all conditions, participants were required to start from standstill in an upright position 159 
with both feet positioned directly underneath their shoulders. When the starting signal was 160 
given, they were required to start sprinting immediately. The starting signal was an auditory 161 
cue, produced by striking two wooden planks forcefully against each other. This was done 162 
out of sight of the participants so no visual anticipation on the start-signal would occur. At 163 
the same time, the wooden planks served as a visual cue that could be used in data analysis to 164 
demarcate the start of each trial. In between trials, participants were given three minutes rest 165 
to allow for sufficient recovery. Also, to avoid injuries, participants were required to perform 166 
a scripted and supervised ten-minute, moderate intensity warm-up prior to the experiment. 167 
 168 
Data analysis 169 
Raw position-data with timestamps, along with some auxiliary data, like participants’ 170 
transponder ID’s, were imported into MATLAB (MathWorks R2019a) and R (R Core Team, 171 
2019) for further analysis. We intended to use the visual cue, given by one of the 172 
experimenters on the field, to demarcate the beginning of each trial, but this turned out not to 173 
be viable. With the LPM-software, events of interest could only be marked with limited 174 
temporal accuracy (i.e. accurate to about ± 200-300ms). Therefore, the start of every trial was 175 

 
1 Note that the series of target distances for backward sprinting is slightly different from the series for forward 
sprinting. We reasoned that in most interceptive tasks, agents would never run 60 meters backwards. Arguably, 
agents would neither run 60 meters forwards to make an interception, however we also wanted to sample the 
extreme cases (e.g. ‘The Catch’ by Willie Mays – Adair, 2002; p. 101).   



taken to be the moment a participant reached a running velocity greater than 1 ms-1. As such, 176 
the start of every trial was determined individually, rendering response time to be irrelevant 177 
for further analyses. The end of every trial was taken to be the instant participants reached the 178 
total distance they had to cover, that is when they reached the finish line. 179 
 180 
Linearity between speed and acceleration 181 
As a first objective, we set out to examine whether an inverse linear relation exists between 182 
running speed and acceleration, as would be predicted from Hill’s (Furusawa et al., 1927; 183 
Hill, 1927) mono-exponential relation on athletic sprint running. As the inverse-linear 184 
relationship was only explicitly hypothesized for forward running, only trials from the 185 
forward-condition were considered for this analysis. Running speed and acceleration were 186 
calculated by differentiating participants’ position-data. Generalized Additive Mixed 187 
Modelling (GAMM) was used to test for linearity between running speed and acceleration.  188 
 189 
GAMM is a powerful and flexible regression technique (Hastie & Tribshirani, 1990; Wood, 190 
2017). As an extension of mixed-effects regression, it is able to account for nested 191 
dependencies in the data. The present experiment is designed such that for every condition, 192 
every participant performs two sprints per target distance. As such, part of the variance in the 193 
data is inherently linked to individual participants and part of the variance is inherently linked 194 
to the different target distances. Mixed-effects regression models (and Generalized Additive 195 
Mixed Models, GAMMs, by extension) are able to bring such dependencies into the model, 196 
mitigating overconfidence in p-values. Furthermore, GAMMs (as implemented in the R 197 
package mgcv—Wood, 2003, 2004, 2011, 2017; Wood, Pya, & Säfken, 2016) are able to 198 
correct for autocorrelation in the residuals, which is crucial in analyzing time-series data. 199 
Finally, and perhaps most importantly, GAMMs explicitly allow for nonlinear relationships 200 
to be modelled. Frequently, the relation between the dependent variable and independent 201 
variables is not linear. Yet, conventional regression techniques typically do not allow for 202 
departures from linearity unless the shape of the non-linear pattern is explicitly specified a 203 
priori (e.g. with quadratic or logarithmic functions). With GAMMs, non-linear patterns in the 204 
data can be modelled through ‘smooths’. By default, the mgcv-package employs thin-plate 205 
regression splines to model nonlinear patterns in the data. The degree of smoothness is 206 
determined by the number of (increasingly complex non-linear) basis functions that are used 207 
to characterize the nonlinear pattern. Rather than fitting the best nonlinear pattern, GAMMs 208 
penalize nonlinearity in order to prevent overfitting. The result of this approach is that 209 
GAMMs will only identify a nonlinear pattern if there is enough support for its presence in 210 
the data (which is also validated internally via cross-validation). One approach to formally 211 
test for linearity using GAMMs is to fit and compare two models: One for which the 212 
relationship between the dependent and the independent variable is forced to be linear and 213 
one for which nonlinear relationships are also allowed2. A model specification without 214 
smoothing functions will produce a linear model while a model specification with smoothing 215 
functions will produce a nonlinear model if the data supports it (see also: Wieling, 2018).  216 
 217 
For each of the four target distances of the forward-condition, both a ‘linear’ and a ‘non-218 
linear model’ were created. The latter model allowed for the modelling of non-linear patterns 219 
in the data by using a thin-plate regression spline with (at most) ten basis functions. The 220 
former model employed no such smoothing functions which forces the relationship between 221 
velocity and acceleration to be modelled by a linear function. In this procedure, we only 222 

 
2 But note that a generalized additive mixed model which shows a non-linear effect is already evidence for this 
(as a linear effect would be identified if no nonlinear pattern is present). 



considered the best attempt of every participant per target condition. This was done, so that 223 
participants’ velocity profiles could be normalized in order to prevent spurious fits. Both 224 
models were fit using maximum likelihood estimation. This allowed for direct model 225 
comparison using the function compareML from the itsadug-package (van Rij et al., 2017). 226 
To account for alpha-inflation due to multiple testing, a Bonferroni correction was applied. 227 
Apart from the intended difference in linearity, the model specifications for the linear model 228 
and the nonlinear model were the same for all target distances. For more information on the 229 
mixed model framework and specifically GAMMs, see for example: Tagliamonte & Baayen, 230 
2012; Wieling, 2018; Winter, 2013; and Winter & Wieling, 2016. 231 
 232 
Determining the effect of target distance on participants’ velocity profiles 233 
People might cover certain distances differently depending on the total distance that needs to 234 
be covered. In our experiment for instance, participants might have covered the first 7.5 235 
meters of a 15-meter dash differently from the first 7.5 meters of a 60-meter dash. As such, 236 
we used GAMMs to check for differences in participants’ velocity profiles for different target 237 
distances. To test for such potential differences, we examined the running data from the 238 
forward-condition. With GAMMs, it is possible to identify the range over which two 239 
(nonlinear) patterns are significantly different. The velocity profiles over the first 7.5 meters 240 
of all target distances were compared; the velocity profiles over the first 15 meters of all but 241 
the 7.5-meter target distance were compared and the velocity profiles over the first 30 meters 242 
of the 30-meter dash and the 60-meter dash were compared. All trials of all participants were 243 
considered. 244 
 245 
Results 246 
For final analysis, data from two participants were excluded. Data from one participant was 247 
incomplete due to technical difficulties related to one of the LPM-transponders, and one 248 
participant had to quit the experiment prematurely due to an unreported, pre-existing injury. 249 
As such, the final analysis was performed on data from all trials of the remaining 31 250 
participants.  251 
 252 
Linearity of running speed and acceleration 253 
As a first objective, we set out to examine whether Hill’s presumed inverse linear relation 254 
between running speed and running acceleration in a maximal-effort sprint was present. 255 
Figure 1 presents normalized running acceleration as a function of normalized running speed 256 
for each of the four target distances3. Using GAMMs, both a linear and a nonlinear model 257 
were fitted to data from the forward-condition. For each of the four target distances (i.e. 7.5, 258 
15, 30 and 60 meters), the nonlinear model provided a significantly better fit to the data than 259 
its linear counterpart. The difference between the two models was highly significant with 𝑝 <260 
0.001 for the 7.5, 15, 30 and 60-meter dash (𝜒!(1) = 143;	𝜒!(1) = 155; 𝜒!(1) = 151 and 261 
𝜒!(1) = 226, respectively). 262 
 263 

<Figure 1> 264 
 265 
The effect of target distance on participants’ velocity-profiles 266 
Having established the nonlinearity of the relation between velocity and acceleration, we 267 
examined whether target distance influenced participants’ sprint behavior. Subtle differences 268 
might exist for the way agents cover different distances. Distinct pacing strategies may be 269 

 
3 For the creation of Figure 1, velocity and acceleration data have been smoothed using a gaussian filter (see 
also section ‘A new macroscopic model on the kinematics of sprint running’. 



employed for various target distances. To test this, we constructed GAM models to make 270 
direct comparisons between different target distances. Figure 2A shows velocity profiles of 271 
the first 7.5 meters of all trials of the forward-condition, for all four target distances. From 272 
the fitted velocity profiles (solid lines) with 95% confidence intervals (shaded areas), it can 273 
be seen that participants’ velocity profiles during their first 7.5 m of running are highly 274 
similar for the different target distances. Only a small, but marked, deviation can be observed 275 
for the 7.5-meter dash. While the velocity profiles for the 15-meter dash, the 30-meter dash 276 
and the 60-meter increase continuously throughout the first 7.5 meters of the trial, the 277 
velocity profile for the 7.5-meter dash starts to level off at around five meters. 278 
 279 

<Figure 2> 280 
 281 
On the basis of the fitted confidence intervals, velocity profiles of different target distances 282 
can be directly compared. Figure 2B shows the difference curve for the velocity profiles of 283 
the 7.5-meter dash and the 15-meter dash. The red (dotted) lines represent the range of 284 
positions for which the difference between the two velocity profiles (7.5-meter dash minus 285 
the 15-meter dash) is significantly different from zero. Beyond 5.2 meters, the average 286 
running velocity for the 7.5-meter dash is significantly lower than for the 15-meter dash. The 287 
average difference increases up to about -0.8 ms-1 towards the end of the trial. Based on the 288 
fitted values in Figure 2A, two other comparisons were made: The 7.5-meter dash versus the 289 
30-meter dash and the 7.5-meter dash versus the 60-meter dash. Significant differences, 290 
comparable to those in Figure 2B, were found for both. Their respective observed windows 291 
of significant difference were: 5.2-7.5 meters and 5.0-7.5 meters. Following the same 292 
rationale, pair-wise comparisons were also made for the 15-meter dash and the 30-meter dash 293 
(Table 1, see also Appendix A). The results were consistent: Whenever participants closed in 294 
on the finish line, their running speeds declined. Here, we refrain from providing a full 295 
discussion on model specification, model performance and technical implementation of the 296 
various GAM-models. For now, note that all effects, fixed or random, were significant and 297 
that all models captured at least 99.4% of the variance.  298 
 299 
Having established that a nonlinear pattern exists for sprint running in the context of 300 
interception and that target distance is only of influence on participants’ velocity profiles in 301 
the context of sprinting towards a finish line, we will now attempt to characterize this non-302 
linear relation, using participants’ (maximum) running speed and acceleration as key 303 
variables. 304 
 305 

<Table 1> 306 
 307 

 308 
A new macroscopic model on the kinematics of sprint running 309 
Figure 1 presents normalized running acceleration as a function of normalized running speed 310 
for each of the four target distances. Over the next paragraphs, we will take a closer look at 311 
participants’ velocity-acceleration profiles to characterize the nonlinear patterns observed. A 312 
convenient and intuitive way to characterize the patterns observed in Figure 1 would be with 313 
the use of polynomials. Equation 1 provides a formulation for a family of functions that can 314 
be used to approximate acceleration (𝑥̈, on the y-axis of Figure 1) as a function of running 315 
velocity (𝑥̇, on the x-axis of Figure 1) in maximal-effort sprint running (see also Figure 3).  316 
 317 
𝑥̈ = 	𝑎(𝑥̇ + 𝑐)"#! ∙ (𝑥̇ − 𝑥̇$%&)! → {𝑥̇	|	0 ≤ 𝑥̇ ≤ 𝑥̇$%&}; 𝑎 > 0; 	𝑐 > 0; 	𝑛 > 2 (1) 

 318 



Where 𝑎 and 𝑐 are constants, 𝑛 is the total degree of the polynomial and 𝑥̇$%& is the 319 
maximum running speed that an athlete can achieve. Changes in constant 𝑐 cause horizontal 320 
stretching relative to point 𝑥̇ = 𝑥̇$%&, causing the polynomial to intersect the y-axis at greater 321 
values for 𝑥̈. When constant 𝑐 equals zero the origin of the function lies at  (0,0). Changes in 322 
𝑛 cause the shape of the polynomial function to change (see also: Figure 3). Finally, the 𝑎-323 
parameter is used to constrain the polynomial so that acceleration (𝑥̈) is never greater than an 324 
athlete’s maximal acceleration (𝑥̈$%&). Please note that 𝑎 is not a ‘free parameter’ since it is 325 
constrained by the values of 𝑥̇$%&, 𝑥̈$%&, 𝑛 and 𝑐 (see Appendix B for the derivation): 326 
 327 

𝑎 =
𝑥̈$%&

A(𝑛 − 2)	𝑥̇$%& − 2𝑐𝑛 + 𝑐B
"#!

A(𝑛 − 2)	𝑥̇$%& − 2𝑐𝑛 − 𝑥̇$%&B
! 

(2) 

 328 
<Figure 3> 329 

 330 
We performed an optimization procedure to find the optimal values for 𝑛 and 𝑐. Optimization 331 
was performed on the basis of goodness of fit, assessed by the coefficient of determination 332 
(𝑅!). For optimization, processed data rather than raw data were used. The degree of the 333 
polynomial (𝑛) was systematically varied between 2 and 10 with a step size of 0.1 and the 334 
horizontal stretch factor (𝑐) was systematically varied between 0 and 100% of maximal 335 
running speed with a step size of 1%. The optimization procedure was executed separately 336 
for trials of the forward-condition and trials of the backward-condition. For every trial of 337 
every participant the coefficient of determination (𝑅!) was calculated. 𝑅!’s were then 338 
averaged over all trials of all participants to obtain an average coefficient of determination for 339 
every combination of 𝑛 and 𝑐. With this procedure the best combination for 𝑛 and 𝑐 in terms 340 
of 𝑅! could be identified. 341 
 342 
We found that a number of different combinations of 𝑛 and 𝑐 performed equally well (for 343 
both conditions). This was caused by an interdependence between 𝑛 and 𝑐. An increase in 𝑛 344 
caused the apex of the polynomial to shift rightward, whereas an increase in 𝑐 caused the 345 
apex of the polynomial to shift leftward. Thus, the effects of 𝑛 and 𝑐 cancel each other out 346 
when it comes to characterizing the local maximum in the data (see Appendix C for a visual 347 
illustration of this effect). Thus, solely based on the coefficient of determination, no 348 
principled decision could be made in selecting one combination of 𝑛 and 𝑐 over another. 349 
Given the present data set, there was one particular combination for 𝑛 and 𝑐 (for both 350 
conditions) that stood out when taking model complexity into account: 𝑛 = 3.2, 𝑐 = 0. For 351 
this combination, the effect for one of the two “free” parameters (𝑐) is cancelled, thus 352 
effectively reducing the number of free parameters by half without loss of explanatory power. 353 
Based on this observation, we selected 𝑛 = 3.2 and 𝑐 = 0 to model the dynamics of sprint 354 
running, which simplifies Equation 1 to hold4: 355 
 356 
𝑥̈ = 	𝑎𝑥̇'.! ∙ (𝑥̇ − 𝑥̇$%&)! → {𝑥̇	|	0 ≤ 𝑥̇ ≤ 𝑥̇$%&}; 𝑎 > 0 (3) 

  357 

 
4 Please note that the optimization procedure was performed only on data for which running velocity was greater 
than 1ms-1. With the LPM-system, we could not accurately assess running speeds and accelerations below that 
threshold (see also the discussion section). So, for the present data, Equation 3 is the most parsimonious. Future 
research, however, should point out whether Equation 3 also holds for lower running speeds.  



Using Equation 3 to model acceleration in sprint running, the average coefficient of 358 
determination for trials of the forward-condition and for trials of the backward-condition was 359 
found to be 0.92 and 0.91, respectively. 360 
 361 

<Table 2> 362 
 363 
Next, we set out to validate Equation 3 (𝑛 = 3.2). Through numerical simulation (Simulink, 364 
MathWorks) position, velocity, and acceleration were calculated from Equation 3. 365 
Preliminary inspection of the fits between the model and the data showed to be promising. 366 
Figure 4 shows a representative trial for one participant performing a 30-meter dash in the 367 
forward-condition. The model closely approximates position (Figure 4A), velocity (Figure 368 
4B) and acceleration (Figure 4C) over time. This close fit between the model and the data 369 
was further confirmed by calculating the coefficient of determination for all trials of the 370 
forward and backward conditions. Table 2 lists the average 𝑅!-scores for position, velocity 371 
and acceleration, split out by target distance, for the forward-condition and the backward-372 
condition. It is clear that the model provides a good description of the various kinematic 373 
measures that are related to performing a maximal-effort sprint. 𝑅!-scores are even close to 374 
perfect for the distance-over-time relationship. When considering the average error in 375 
distance over time, for trials of the forward and the backward condition, the model was never 376 
off by more than 5.0% of the target distance both for the forward condition as well as for the 377 
backward condition. For the 60-meter dash of the forward condition, the model was even 378 
accurate within 1%, meaning that the model was never off by more than 37cm.  379 
 380 

<Figure 4> 381 
 382 
Forwards and backwards running compared 383 
The data show that forward running and backward running are distinctly different in terms of 384 
absolute performance. Participants’ peak running velocity was significantly higher [t(30) = 385 
39.9, p < 0.001] in the forward running condition (M=7.63; SD=0.57) than in the backward 386 
running condition (M=5.20; SD=0.58). Similarly, participants’ peak running acceleration was 387 
significantly higher [t(30) = 14.1, p < 0.001] in the forward running condition (M=4.58; 388 
SD=0.55) than in the backward running condition (M=3.35; SD=0.28). However, when 389 
looking at the way in which the macro-dynamics of running evolve over the course of a 390 
sprint, the apparent differences between forward running and backward running are 391 
disappear. Table 2 shows the goodness of fit for position, velocity, and acceleration for both 392 
forward running and backward running – hardly any differences in the coefficients of 393 
determination can be observed between both conditions. Thus, indicating that the macro-394 
dynamics of forward running are highly similar in form to the macro-dynamics of backward 395 
running. The only difference between the two conditions is in the maximal velocities and 396 
accelerations that are obtained.  397 
 398 
Individual differences in the kinematics of sprint running  399 
Having validated the model, we now turn to its interpretation. How do maximal running 400 
speed and maximal running acceleration relate to influence the maximal distance that can be 401 
covered over time? Figure 5 shows the modelled action boundaries of all participants, with 402 
the slowest participant, the fastest participant and an average participant highlighted. From 403 
panel A, it can be seen that the fastest participant and the slowest participant are almost three 404 
seconds apart in crossing the 60-meter finish line. Looking at panel B, it can be seen that over 405 
the first two seconds, the faster participant develops speed faster than the slower participant. 406 
This development plateaus after about two seconds, as can also be seen from the acceleration 407 



profiles in panel C. After about two seconds, the acceleration profiles of the fast and the slow 408 
participant start to converge and after three seconds the difference in acceleration between the 409 
fast and the slow participant is almost imperceptible. This means that around three seconds, 410 
participants have almost reached their top speed. Consequently, after that, all differences in 411 
performance are almost exclusively attributable to differences in top-speed. Before that, 412 
acceleration also plays a marked role (see also Figure 6). 413 
 414 

<Figure 5> 415 
 416 
This brings us to the final question of how maximal running speed and maximal running 417 
acceleration are related. Figure 6A shows a scatterplot of maximal running speed and 418 
maximal running acceleration (𝑅! = 0.58). From the plot it can be seen that there is a 419 
moderate positive relationship between maximal running speed and maximal running 420 
acceleration: Participants that boast high peak-velocities typically also boast high peak-421 
accelerations. The relationship however is not perfect. Participants can exhibit similar peak-422 
velocities while exhibiting dissimilar peak-accelerations and vice versa. This phenomenon is 423 
highlighted in Figure 6A by the orange and cyan dyads, respectively. Using Equation 3, it 424 
can be demonstrated how individual differences in peak running velocity and peak running 425 
acceleration cause for markedly different running dynamics. From panels B, D, F and H, it 426 
can be seen how differences in peak running velocity translate to the macro-dynamics of 427 
running. The participant (in the orange dyad) with the greater top-speed covers more distance 428 
over time (panel B); has a higher overall running speed (panel D) and accelerates over a 429 
longer period of time (panel F). Finally, it can be seen that peak-acceleration is reached at a 430 
higher velocity for the faster runner than for the slower one. Close examination of panel B 431 
learns that after 1 second, the difference between the two runners is 0.05 meters; after 2 432 
seconds this has increased to 0.47 meters and after 3 seconds this difference is 1.60 meters. 433 
Conversely, from panels C, E, G, and I of Figure 6, it can be seen how differences in peak 434 
running acceleration (cyan dyad) translate to the macro-dynamics of running. The runner 435 
with the greater acceleration covers more distance over time (panel C); has a higher overall 436 
velocity (panel E) and accelerates more intensely (panel G). While the difference in finish-437 
time is less pronounced for the cyan pair than for the orange pair, the differences in the initial 438 
phases of the sprint are in fact more pronounced for the cyan pair. Whereas the orange pair 439 
differed 0.05 meter at 1 second and 0.47 meters at 2 seconds, the cyan pair differed 0.54 and 440 
1.18 meters at those very same moments. At three seconds, the differences between the dyads 441 
are comparable again at 1.60 meters and 1.50 meters, respectively. Clearly, for short 442 
distances, having great accelerative capabilities pays off; while for larger distances having a 443 
great top-speed is favorable.  444 
 445 

<Figure 6> 446 
 447 
Discussion 448 
The main finding of the present contribution is that the action boundary in maximal effort 449 
sprint running is determined by the current running speed of the agent in combination with 450 
their maximal running speed and maximal running acceleration. This finding is in line with 451 
previous research which showed that neither kinematic quality on its own could reliably 452 
capture the action boundary in running (Fajen et al., 2011; Oudejans et al., 1996; Postma et 453 
al., 2018). Furthermore, we found that the way maximal running speed and maximal running 454 
acceleration relate to determine the action boundary in running is unique for every individual. 455 
It was found that the moderate positive relationship between maximal running speed and 456 
maximal running acceleration harbored wide individual variation: Participants with 457 



comparable maximal running speeds might show distinctly differing maximal accelerations, 458 
and vice versa. As such, the resulting locomotor boundaries are unique to every individual as 459 
well. Finally, we found that participants did not employ different pacing strategies for 460 
covering different target distances. Taken together, the present findings highlight the fact that 461 
action boundaries are individual-specific qualities that are dynamic in nature. 462 
 463 
Model characteristics 464 
While the results showed that the model was well able to characterize the kinematics of 465 
maximal effort sprint running, we were unable to accurately model the very first part of the 466 
sprint. More specifically, running speeds between 0 and 1 ms-1 could not accurately be 467 
measured (see also: Ogris et al., 2012; Stevens et al., 2014). As a result, the exact value of 𝑛 468 
and 𝑐 could only be narrowed down to a range of possible values. Future research has to 469 
point out what the speed-acceleration profile looks like for the very first part of the sprint, so 470 
the exact value of 𝑛 and 𝑐 can be determined. The relevance of this endeavor would go 471 
beyond mere parameter optimization. The decision to engage in interceptive behavior is 472 
informed by (optic) information that specifies whether or not it is (still) within the agents’ 473 
action possibilities to get to the future interception location in time. As such, an accurate 474 
characterization of agents’ locomotor abilities at (near) standstill is needed to understand why 475 
agents initiate running under certain circumstances, but not in others. 476 
 477 
Another issue pertaining to the characterization of the model is about the ecological 478 
grounding of its parameters: To what extent can the parameters of the model be traced back 479 
to behaviorally relevant characteristics of the agent-environment system? The answer to this 480 
question is two-fold. First, maximal running speed and maximal running acceleration as well 481 
as current running speed can be directly related to the agent: 𝑥̇$%&, 𝑥̈$%& and 𝑥̇, respectively. 482 
Second, parameter 𝑎 functions to set the local maximum of the curve such that it corresponds 483 
to the maximum rate of acceleration of the participant. This parameter is constrained by 484 
𝑥̇$%&, 𝑥̈$%& and 𝑛 (see also Appendix B). Together, these variables model the macro-485 
dynamics of sprint-running in an ecologically valid manner. Still, a discussion is to be held 486 
about the order of the polynomial, 𝑛. As already mentioned above, we were unable to 487 
definitively characterize the order of the polynomial function, based on the current data. That 488 
is to say, based on our current analyses, the order of the model is estimated to lie between 3.2 489 
and 6.9. Which makes that the choice for 𝑛 = 3.2 was not motivated by ecological 490 
considerations but rather by modelling considerations, i.e., parsimony. Knowing agents’ 491 
maximal acceleration at standstill would help to further constrain the polynomial function, 492 
allowing for a more ecological grounding of the order of the polynomial. 493 
 494 
Finally, the model was specified such that it allowed for an accurate characterization of 495 
participants’ accelerative qualities. Their decelerative qualities were not considered in the 496 
present context. Consequently, the model is not able to account for any decelerations that 497 
might be inherent to interceptive behaviors. The model is for instance unable to capture the 498 
finish-line effect or the slight oscillations in acceleration that can be observed when 499 
participants run at or near their maximal speed (see Figure 4C). Still, some interceptive 500 
behaviors might require rapid turns and quick starting and stopping. Such behaviors are 501 
prevalent in team sports, such as basketball. If one seeks to understand such behaviors, the 502 
model needs to be extended to include an account on the maximal rate of deceleration and the 503 
maximal rate of turning. It is likely that these three are dynamically related to one another: 504 
The maximal rate of turning and the maximal rate of deceleration are for instance dependent 505 
on current running speed. Future investigations should point out how these qualities relate to 506 
understand the action boundaries in agile (interceptive) behaviors.  507 



 508 
Task ecology and representativeness 509 
The aim of the present contribution was to model the action boundaries involved in 510 
interceptive behavior. To that end, we investigated various forms of sprinting that could be 511 
considered representative for the kind of running behavior that might be observed in 512 
interception tasks like running to catch a baseball and running to intercept an advancing 513 
quarterback. We investigated different modes of locomotion (forward and backward running) 514 
and we investigated various target distances. Still, the ecology of the current experimental 515 
setup was not fully representative of the task ecology (cf. Brunswick, 1956) of interceptive 516 
tasks like fly-ball catching and gap-crossing, implying that the results should be interpreted 517 
with care . Most interceptive tasks involve some form of coincidence timing (i.e., the 518 
temporal-spatial coordination of movement relative to something or someone). In the current 519 
experimental setup, the temporal aspect was not represented. While participants were told to 520 
get to the finish line as fast as possible, there were no demands on ‘timing’: any and all 521 
running speeds would eventually lead participants to cross the finish line. Put differently, 522 
their crossing of the finish line was not dependent on their temporal-spatial coordination 523 
relative to it. Besides this timing-element, social and competitive elements might have 524 
affected the representativeness of our task. From informal observations, we learned that 525 
participants tended to compete with others (even though this was never instructed). Such 526 
complex social interactions are likely not present, or present in a different way, when running 527 
to catch a fly ball. Together, such factors might have caused participants to organize their 528 
movements differently from the interceptive tasks we aimed to model. The extent to which 529 
the identified relationship is subject to task ecology is an (outstanding) empirical question. In 530 
future research, we aim to address this matter by recording (and modelling) maximal effort 531 
sprints for different task ecologies and evaluating their differences. 532 
 533 
Implications for Affordance-Based Control modelling 534 
Action boundaries play an important role in modelling Affordance-Based Control strategies 535 
(Fajen, 2007, 2013). Action boundaries separate action possibilities from action 536 
impossibilities. As such, having modelled the action boundary for running might proof a 537 
valuable first step towards the formulation of Affordance-Based Control models for 538 
interceptive behaviors. The present findings show that it is important to acknowledge the fact 539 
that (locomotor) action boundaries are dynamic in nature. Previous modelling attempts have 540 
often approximated action boundaries as fixed, singular values. The current results come to 541 
show that such approximations might not do justice to the biomechanical factors that limit 542 
our action possibilities. Further, it is important to recognize that the present model should not 543 
be taken to represent the affordance for interception just yet. Perception is of affordances 544 
(Gibson, 1979). Typically, affordances are specified as the ratio between some ideal value 545 
and a corresponding maximum in the same metric. For braking a car to a safe stop for 546 
instance, the affordance for safe stopping is specified as the ratio between ideal deceleration 547 
(𝑑)*+%,) and maximal deceleration (𝑑$%&); where ideal deceleration is the rate of deceleration 548 
that would bring a car to a safe stop without having to make additional braking adjustments 549 
(Fajen, 2005a, 2005c, 2005b, 2007). When the ratio of ideal deceleration over maximal 550 
deceleration is smaller than 1; safe braking is afforded. Conversely, when the ratio of ideal 551 
deceleration and maximal deceleration is greater than 1; safe braking is no longer afforded5. 552 
Through perceptual (re)calibration, motorists learn to relate ideal deceleration to maximal 553 
deceleration, allowing them to get better attuned to their environments and what it means to 554 
them in terms of safe braking. Similar principles might hold for interception as well, allowing 555 

 
5 It is important to note that ideal deceleration can be directly perceived by the motorist (Fajen, 2005a). 



potential affordance-based control strategies for interception to be defined as the ratio of 556 
𝑥)*+%, over 𝑥$%&. Where 𝑥 is a placeholder for speed, acceleration, or some other 557 
(compound) kinematic measure. Once 𝑥)*+%, has been captured in terms of its perceptual 558 
variables, it can be related to its corresponding action boundary. In the next paragraph, we 559 
will exemplify how this might work for an actual interception task by considering the fly-ball 560 
paradigm. 561 
 562 
The fly-ball paradigm concerns the case of an outfielder running to catch a fly ball. To arrive 563 
at an affordance-based control strategy for the fly-ball paradigm, a measure is needed that 564 
perceptually specifies what action is required from the outfielder to make a successful catch 565 
(𝑥)*+%,). In case of the fly-ball paradigm, this required measure can be obtained from the 566 
work of Rozendaal & Van Soest (2003), who posited the ‘exact Optical Acceleration 567 
Cancellation’ (exact OAC) strategy. From this strategy, the rate of acceleration that is 568 
required from the outfielder to get to the right place in the right time to make a catch (𝑎)*+%,) 569 
can be obtained6. Through perceptual calibration, 𝑎)*+%, can be scaled to an outfielder’s 570 
maximal acceleration, which we established in the present contribution, see Equation 3. This 571 
maximal acceleration can be denoted as 𝑎$%&. Thus, affordance-based control for running to 572 
catch fly balls might be formalized as the ratio of ideal acceleration over maximal 573 
acceleration. When the ratio of 𝑎)*+%, over 𝑎$%& is smaller than 1; catching is afforded. 574 
Conversely, when the ratio of 𝑎)*+%, over 𝑎$%& is greater than 1; catching is not afforded.  575 
 576 
To date, the problem in formalizing an affordance-based control strategy for running to catch 577 
fly balls has been the inability to accurately characterize outfielders’ action boundaries. 578 
Previous studies have been unable to unequivocally pinpoint the variable(s) that limit 579 
catching performance in running to catch fly balls  (Fajen et al., 2011; Oudejans et al., 1996; 580 
Postma et al., 2018). Equation 3 advances the state of the art by reliably modelling the action 581 
boundaries in sprint running (𝑎$%&), both for forward running as for backward running. As 582 
detailed above, pairing 𝑎$%& to 𝑎)*+%, would provide a first formalization of an affordance 583 
based control strategy in running to catch fly balls. Here, we do not wish to make any claims 584 
about the control strategies that outfielders use in practice rather, we wish to illustrate the 585 
merits of having characterized the action boundary for sprint running in the context of 586 
affordance-based control and interceptive tasks. Future research has to show whether 587 
outfielders indeed control their locomotor behavior in a way is consistent with the use of the 588 
ratio of 𝑎)*+%, over 𝑎$%&. 589 
 590 
Conclusion 591 
In the present contribution, we studied the dynamics of maximal-effort sprint running in the 592 
context of running to catch fly balls. The aim was to map the relation among maximum 593 
velocity, maximum acceleration, and the distance coverable over time. First, we established 594 
that Hill’s model on the dynamics of running in athletic sprinting was not directly 595 
transferable to most interceptive tasks; a marked difference was observed between the 596 
dynamics of athletic sprinting and the dynamics exhibited by participants in the present 597 
study. This led us to propose an alternative model, specifically designed to capture the 598 
dynamics of sprinting, both forwards and backwards, in the context of interceptive tasks. 599 
With this model, we were able to make highly reliable predictions of participants’ position-, 600 
velocity- and acceleration over time. Furthermore, using Generalized Additive Mixed 601 
Modelling, we were able to establish that target distance was of no profound influence on the 602 

 
6 In its original formulation, the rate of acceleration is not given in optical terms, but all terms can be captured in 
optical variables. 



dynamics of sprint running, rendering our alternative model valid for target distances up to 60 603 
meters. Finally, we showed that action boundaries are agent-specific and not to mention 604 
dynamic. Every individual has unique kinematic profiles that can be traced back to individual 605 
differences in kinematic qualities (e.g., maximal running speed and maximal running 606 
acceleration). With the present contribution, we have tried to ease the scientific process of 607 
formalizing Affordance-Based Control strategies for interception tasks. Also, the present 608 
work might also serve as a route-to-discovery for the specification of higher-order action 609 
boundaries. 610 
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Appendix A 703 
Participants’ running velocity declined towards the finish-line with an order of magnitude 704 
similar to the decline observed in Figure 2. With respect to differences in running velocity 705 
over the first 15 meters of the 15-, 30- and 60-meter dash, we found a significant window of 706 
difference (11.9 – 15 meters) for the comparison of the 15-meter dash with the 30-meter 707 
dash as well as a significant window of difference (11.6 – 15 meters) for the comparison of 708 
the 15-meter dash with the 60-meter dash. Leaving the comparison of running velocity over 709 
the first 30 meters of the 30-meter dash with the 60-meter dash. For this comparison, we 710 
found a significant window of difference of 25.9 to 30 meters. For all analyses presented here, 711 
the alpha-level was corrected for using a Bonferroni-correction. 712 

 713 
Figure A.1 | Difference curve for the velocity profiles of the 15-meter dash and the 30-meter dash. The average (curved 714 
line) and the 95% confidence interval (shaded region) are provided. Position (m) is on the abscissa and the estimated 715 
difference in velocity (m/s) is on the ordinate. The area demarcated by the red (dotted) lines represents the range of 716 
positions for which the difference between the velocity profiles (15-meter dash minus 30-meter dash) is significantly 717 
different from zero. 718 



 719 
Figure A.2 | Difference curve for the velocity profiles of the 15-meter dash and the 60-meter dash. The average (curved 720 
line) and the 95% confidence interval (shaded region) are provided. Position (m) is on the abscissa and the estimated 721 
difference in velocity (m/s) is on the ordinate. The area demarcated by the red (dotted) lines represents the range of 722 
positions for which the difference between the velocity profiles (15-meter dash minus 60-meter dash) is significantly 723 
different from zero. 724 

 725 
Figure A.3 | Difference curve for the velocity profiles of the 30-meter dash and the 60-meter dash. The average (curved 726 
line) and the 95% confidence interval (shaded region) are provided. Position (m) is on the abscissa and the estimated 727 
difference in velocity (m/s) is on the ordinate. The area demarcated by the red (dotted) lines represents the range of 728 
positions for which the difference between the velocity profiles (30-meter dash minus 60-meter dash) is significantly 729 
different from zero. 730 
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Appendix B 732 
The 𝑎-parameter can be derived by setting the first derivative of Equation 4 to zero and 733 
solving for 𝑥̇, providing: 734 
 735 

𝑥̇ =
(𝑛 − 2)	𝑥̇𝑚𝑎𝑥 − 2𝑐

𝑛
 (A.1) 

 736 
Equation A1 provides the 𝑥̇-coordinate for which 𝑥̈ = 𝑥̈$%&. Knowing the 𝑥̇-coordinate for 737 
which 𝑥̈ is maximal allows for the 𝑎-parameter in Equation 4 to be established. For 𝑥̈ = 𝑥̈$%&, 738 
the 𝑎-parameter is given by: 739 
 740 

𝑎 =
𝑥̈$%&

A(𝑛 − 2)	𝑥̇$%& − 2𝑐𝑛 + 𝑐B
"#!

A(𝑛 − 2)	𝑥̇$%& − 2𝑐𝑛 − 𝑥̇$%&B
! 

(A.2) 

 741 
Subsequently entering Equation A2 into Equation 4 provides: 742 
 743 

𝑥̈ = 	
𝑥̈$%&

)(𝑛 − 2)	𝑥̇$%& − 2𝑐𝑛 + 𝑐.
'()

)(𝑛 − 2)	𝑥̇$%& − 2𝑐𝑛 − 𝑥̇$%&.
) (𝑥̇ + 𝑐)

'()(𝑥̇ − 𝑥̇$%&)) 
(A.3) 

 744 
Equation A3 is a reformulation of Equation 4 in which the 𝑎-parameter is described in terms 745 
of: 𝑥̈$%&,	𝑥̇$%&, 𝑛 and 𝑐.  746 
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Appendix C 748 

 749 
Figure C.1 | Best performing model specifications in terms of 𝑹𝟐 for all trials of all participants on the 30-meter dash of 750 
the forward-condition, with running velocity on the abscissa and running acceleration on the ordinate. Both running 751 
velocity and acceleration have been normalized by scaling all values to participants’ maximal running velocity and 752 
acceleration, respectively. Semitransparent black lines represent participants’ data, colored lines represent different 753 
model specifications (i.e. different values for 𝒏 and 𝒄). A red-yellow gradient is used to represent different model 754 
specifications; the red side of the spectrum specifies low values for 𝒏 and 𝒄 (from: 𝒏 = 𝟑. 𝟐 and 𝒄 = 𝟎) and the yellow 755 
side of the spectrum specifies higher values for 𝒏 and 𝒄 (up to: 𝒏 = 𝟔. 𝟗 and 𝒄 = 𝟏𝟎𝟎%). 756 

757 



 758 
Figure 1 | Sprint profiles from the forward-condition (condition 1). Normalized running velocity is on the abscissa and 759 
normalized running acceleration is on the ordinate. Both running velocity and acceleration have been normalized by 760 
scaling all values to participants’ maximal running velocity and acceleration, respectively. The velocity-acceleration 761 
profiles are split out by target distance: Panel A represents all trials from the 7.5-meter dash; panel B represents all trials 762 
from the 15-meter dash; panel C represents all trials from the 30-meter dash, and panel D represents all trials from the 763 
60-meter dash.  764 

 765 

 766 
Figure 2 | A) Velocity profiles over the first 7.5 meter for sprints with different target distances: 7.5-meter dash (red), 15-767 
meter dash (cyan), 30-meter dash (dark grey) and 60-meter dash (green). Dotted curves represent measured running 768 
speed for different target distances, while unbroken curves, with 95% confidence intervals, represent fitted values. 769 
Generalized Additive Modeling was used to determine the fitted values. B) Difference curve for the velocity profiles of the 770 
7.5-meter dash and the 15-meter dash. The average (curved line) and the 95% confidence interval (shaded region) are 771 
provided. Position (m) is on the abscissa and the estimated difference in velocity (m/s) is on the ordinate. The area 772 
demarcated by the red (dotted) lines represents the range of positions for which the difference between the velocity 773 
profiles (7.5-meter dash minus 15-meter dash) is significantly different from zero. 774 
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 776 
Figure 3 | Exemplary plot showing polynomials of the form specified by Equation 4. The polynomial functions displayed 777 
here differ in order (𝒏) and in constant (𝒄). In this example, the 𝒂-parameter was calculated, for every combination of 𝒏 778 
and 𝒄, to keep maximum running velocity (𝒙̇𝒎𝒂𝒙) and maximum running acceleration (𝒙̈𝒎𝒂𝒙) constant at 10𝒎𝒔%𝟏 and 779 
7.5	𝒎𝒔%𝟐 respectively.  780 

 781 

 782 
Figure 4 | Time series data of position (A), velocity (B) and acceleration (C) for one representative trial (forward-783 
condition, 30-meter dash). The solid blue lines represent the data and the red dashed lines represent the model’s 784 
simulation. Goodness of fit (R2) is provided for each kinematic measure. 785 

 786 

0 10
velocity (ms-1)

0

7.5
ac

ce
le

ra
tio

n 
(m

s-2
)

n = 3; c = 0
n = 3; c = 0.5
n = 3; c = 1
n = 4.5; c = 0
n = 4.5; c = 0.5
n = 4.5; c = 1
n = 6; c = 0
n = 6; c = 0.5
n = 6; c = 1

A

B

C



 787 
Figure 5 | Modelled action boundaries of all participants expressed in terms of position (panel A); velocity (panel B); 788 
acceleration (panel C) and acceleration-over-velocity (panel D). The bold lines in red highlight the fastest participant 789 
(upper line), the slowest participant (lower line) and an average participant (middle line). 790 
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 792 
Figure 6 | Compound figure showing the relationship between maximal running velocity, maximal running acceleration 793 
and the distance coverable over time for forward running. Panel A shows a scatterplot of the observed maximal running 794 
velocity and acceleration of participants. Dashed lines represent the median values for running speed (vertical) and 795 
running acceleration (horizontal). Exemplary dyads are highlighted for illustrational purposes. The members of the 796 
orange dyad have similar values for peak-acceleration and dissimilar values for peak-velocity. The members of the cyan 797 



dyad have similar values for peak-velocity and dissimilar values for peak-acceleration. Panels B-I show the modeled 798 
macro-dynamics of sprint-running for the orange dyad (left-hand side) and the cyan dyad (right-hand side). The action 799 
boundaries for both dyads are illustrated in terms of position (panel B and C); velocity (panel D and E); acceleration 800 
(panel F and G); and acceleration-over-velocity (panel H and I). The orange graphs represent the orange dyad, and the 801 
cyan graphs represent the cyan dyad.  802 

803 



Table 1 | Pair-wise comparison of velocity profiles 804 
 Comparator Target Distance 
Target Distance 15m  30m  60m 
7.5m 2.3 2.3 2.5 

15m  - 3.1 3.4 

30m  - - 4.1 

Note. This table shows the extent of the observed ‘finish-line effect’ for different target distances. That is, this 805 
table shows the distance to the finish line for which the velocity profiles of any two target distances were 806 
significantly different from zero (window of significant difference). For example, the velocity profiles of the first 807 
7.5 meters of the 7.5-meter dash were significantly different from the velocity profiles of the first 7.5 meters of 808 
the 15-meter sprint for the final 2.3 meters to reaching the finish line (first row, first column). 809 
 810 
Table 2 | Model goodness of fit (𝑅!) for position, velocity and acceleration for different target 811 
distances and running directions 812 

 Target Distance 
 Forward  Backward 
 7.5m 15m 30m 60m  3.75m 7.5m 15m 30m 
Position 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 

Velocity 0.98 0.99 0.98 0.95  0.98 0.98 0.97 0.95 

Acceleration  0.93 0.94 0.90 0.91  0.94 0.94 0.89 0.87 
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