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Abstract 
In phonetics, many datasets are encountered which deal with dynamic data collected over 
time. Examples include diphthongal formant trajectories and articulator trajectories 
observed using electromagnetic articulography. Traditional approaches for analyzing this 
type of data generally aggregate data over a certain timespan, or only include 
measurements at a fixed time point (e.g., formant measurements at the midpoint of a 
vowel). In this paper, I discuss generalized additive modeling, a non-linear regression 
method which does not require aggregation or the pre-selection of a fixed time point. 
Instead, the method is able to identify general patterns over dynamically varying data, while 
simultaneously accounting for subject and item-related variability. An advantage of this 
approach is that patterns may be discovered which are hidden when data is aggregated or 
when a single time point is selected. A corresponding disadvantage is that these analyses 
are generally more time consuming and complex. This tutorial aims to overcome this 
disadvantage by providing a hands-on introduction to generalized additive modeling using 
articulatory trajectories from L1 and L2 speakers of English within the freely available R 
environment. All data and R code is made available to reproduce the analysis presented in 
this paper.  
 
1. Introduction 
In phonetics, many types of data are collected, and frequently these types of data involve 
some kind of dynamic data collected over time. For example, in Volume 65 of Journal of 
Phonetics, seven out of nine papers focused on dynamic data. Most papers investigated 
vowel formant measurements in speech production (Hay et al., 2017; Hualde et al., 2017; 
Hübscher et al., 2017; Ots, 2017; Rao et al., 2017; Yang & Fox, 2017). The authors of these 
papers either analyzed formant measurements at pre-selected time points (Yang & Fox, 
2017; Hualde et al., 2017), average formant measurements (Hay et al., 2017; Hübscher et al., 
2017), or simplified descriptions of formant contours (Ots, 2017; Rao et al., 2017). Another 
type of dynamic data, articulatory measurements (analyzed at the vowel midpoint), was 
analyzed by Pastätter & Pouplier (2017).  
 As the aforementioned studies illustrate, dynamic data is frequently simplified in 
one way or another before being analyzed. The advantage of simplification is clear. It not 
only reduces the data to a more manageable size, but it also allows the researcher to use 
well-known and well-established statistical approaches for analyzing the data, such as 
analysis of variance or linear mixed-effects regression modeling. But there is also a 
disadvantage associated with simplification: potentially interesting patterns in the dynamic 
data may be left undiscovered. For example, Van der Harst et al. (2014) showed that 
analyzing dynamic formant trajectories revealed relevant (sociolinguistic) information, 
which was not apparent when analyzing a single time point.  
 When the full range of dynamic data is the subject of analysis, more sophisticated 
statistical techniques need to be employed, particularly those which are able to identify 
non-linear patterns. For example, one can use growth curve analysis (Mirman et al., 2008; 
Mirman, 2014; see Winter & Wieling, 2016 for a tutorial introduction) which requires the 
researcher to provide the specification of the non-linear pattern a priori. Another popular 
approach is to use (a variant of) functional data analysis (e.g., Ramsay & Silverman, 2005; 
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Gubian et al., 2015) or sparse functional linear mixed modeling (Cederbaum et al., 2016; 
Pouplier et al., 2017)1 where functional principal components analysis can be used to 
characterize different types of non-linear patterns. In this paper, however, we will focus on 
generalized additive models (GAMs; Hastie & Tibshirani, 1990; Wood, 2006; Wood, 2017). 
In generalized additive modeling, the non-linear relationship between one or more 
predictors and the dependent variable is determined automatically as a function of the 
algorithm. While this type of analysis is not new, analyzing dynamic data in linguistics 
(potentially involving millions of data points) has been – until recently – computationally 
prohibitive. Nevertheless, various studies have recently been conducted which illustrate the 
potential of generalized additive modeling in linguistics and phonetics.  
 Meulman et al. (2015) showed how to analyze EEG trajectories over time while 
simultaneously assessing the continuous influence of (second language learners’) age of 
acquisition in a dataset of over 1.6 million observations. Importantly, they compared their 
analysis using GAMs to a more traditional analysis of variance analysis, and showed that the 
latter analysis was less sensitive and would have missed important results. Another 
example is provided by Nixon et al. (2016), who illustrated how visual world (i.e. eye 
tracking) data could suitably be analyzed with GAMs in a study on Cantonese tone 
perception. Finally, Wieling et al. (2016) used GAMs to compare articulatory trajectories 
between two groups of Dutch dialect speakers.  
 While the second edition of the book Generalized Additive Models: an introduction 
with R (Wood, 2017) provides an excellent discussion and introduction to GAMs, it assumes 
a reasonably high level of technical sophistication. The main aim of the present study is to 
illustrate and explain the use of generalized additive modeling in a more accessible way, 
such that it may be used by linguists to analyze their own (dynamic) data. In this tutorial, 
we will analyze a dataset of articulatory trajectories comparing native speakers of English 
to Dutch speakers of English as a second language (L2). We will systematically increase the 
sophistication of our analysis by starting from a simple generalized additive model and 
extending it step-by-step. While the step-by-step analysis is not an approach someone 
would normally use (i.e. one would normally start with the model reflecting the 
hypothesis), we use this approach here to incrementally explain all necessary concepts with 
respect to generalized additive modeling.  

There are already a few existing tutorials on GAMs. Sóskuthy (2017) provides an 
excellent tutorial introduction to GAMs, where he shows how to analyze formant 
trajectories over time using real-world data from Stuart-Smith et al. (2015). In addition, 
Winter and Wieling (2016) take a hands-on approach to discuss various statistical 
approaches, including mixed-effects regression, growth curve analysis and generalized 
additive modeling, to model linguistic change. The present paper differs from Winter and 
Wieling (2016) by not providing a comparison between different analysis approaches, but 

                                                        
1 The sparse functional linear mixed modeling approach of Cederbaum et al. (2016) and Pouplier et 
al. (2017) has some overlap with generalized additive modeling, as it also uses the function bam from 
the mgcv R package. Nevertheless, there are also distinct differences between the two approaches. An 
important advantage of the sparse functional linear mixed modeling approach is that it allows the 
error to be heteroscedastic (i.e. the error variance is allowed to vary depending on the value of the 
predictor or dependent variable), which is problematic for generalized additive models (but see 
Section 4.6 for a potential solution). An important disadvantage of sparse functional linear mixed 
modeling, however, is that random slopes cannot be included (yet). Consequently, when there is 
subject-specific variability in the effect of a predictor, the associated confidence bands will be too 
thin (i.e. p-values will be too low; see Section 4.7). In addition, model comparison of two different 
sparse functional linear mixed models fitted to the same data is not possible. In sum, both methods 
have their own strengths and weaknesses, and it will depend on the characteristics of the data and 
the model which approach is preferred. 
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instead providing a more comprehensive overview of generalized additive modeling (e.g., 
including non-linear interactions, model criticism, etc.). Compared to Sóskuthy (2017), the 
present paper provides less detail about GAM theory, but places more emphasis on 
evaluating whether model assumptions are satisfied. In addition, Sóskuthy provides an 
analysis of an acoustic dataset of about 5,000 observations, whereas the present paper 
shows how to apply GAMs to a much larger (articulatory) dataset containing over 100,000 
observations. Finally, this tutorial also illustrates how to fit a non-Gaussian GAM, which 
neither of the two other tutorials show.  

In the following two sections, we will discuss the research question and the data 
collection procedure. In Sections 4 and 5, we will illustrate and explain the details of the 
model specification (in the statistical software package R; R Core Team, 2017), and also 
explain important concepts necessary to understand the analysis.2 Finally, Sections 6 and 7 
provide a discussion of the advantages and disadvantages of generalized additive modeling 
and a conclusion.  
 
2. Research project description and research question 
In this research project, our goal was to compare the pronunciation of native English 
speakers to non-native (Dutch) speakers of English. Speech learning models, such as Flege’s 
Speech Learning Model (SLM; Flege, 1995) or Best’s Perceptual Assimilation Model (PAM; 
Best, 1995), explain L2 pronunciation difficulties by considering the phonetic similarity of 
the speaker’s L1 and L2. Sound segments in the L2 that are very similar to those in the L1 
(and map to the same category) are predicted to be harder to learn than those which are not 
(as these map to a new sound category). In this tutorial we focus on data collected for Dutch 
L2 speakers of English when they pronounce the sound /θ/ (which does not occur in the 
native Dutch consonant inventory, but is very similar to the Dutch sounds /t/ or /d/), and 
compare their pronunciations to those of native Standard Southern British English 
speakers. Based on earlier acoustic analyses of different data (Hanulika & Weber, 2012; 
Westers et al., 2007), Dutch speakers were shown to frequently substitute /θ/ with /t/. This 
finding is in line with predictions of the SLM and PAM, and is used to guide our hypothesis.  

Instead of focusing on perceptual or acoustic differences, here we will focus on the 
underlying articulatory trajectories. There are only a small number of studies which have 
investigated L2 differences in pronunciation from an articulatory perspective. One of the 
few studies was conducted by Nissen et al. (2007) who investigated differences between the 
L2 English pronunciation of native Korean and native Spanish speakers. However, in 
contrast to our study, they did not include a native speaker group.  

In the present study, we will investigate the movement of the tongue tip during the 
pronunciation of words (minimal pairs) containing either /t/ or /θ/. Consequently, the 
research question of our study is as follows:  
 

Do Dutch non-native speakers of English differ from native English speakers 
contrasting the dental fricative /θ/ from the alveolar plosive /t/ in articulation? 
 

Our associated null-hypothesis is that the two groups will show the same contrast between 
/t/ and /θ/, and the alternative hypothesis – on the basis of the SLM and PAM – is that the 
Dutch speakers will show a smaller contrast between the two sounds, as they will more 
often merge the two sounds. 
 
 

                                                        
2 This analysis is loosely based on several course lectures about generalized additive models. The 
slides of these lectures are available at: http://www.let.rug.nl/wieling/Statistics. 

http://www.let.rug.nl/wieling/Statistics
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3. Data collection procedure 
The Dutch L2 data was collected at the University of Groningen (20 university students), 
and the English L1 data was collected at the University College London (22 university 
students). Before conducting the experiment, ethical approval was obtained at the 
respective universities. Before the experiment, participants were informed about the nature 
and goal of the experiment and signed an informed consent form. Participants were 
reimbursed either via course credit (Groningen) or payment (London) for their 
participation, which generally took about 90 minutes.  

We collected data for 10 minimal pairs of English words for all speakers (i.e. ‘tent’-
‘tenth’, ‘fate’-‘faith’, ‘fort’-‘forth’, ‘kit’-‘kith’, ‘mitt’-‘myth’, ‘tank’-‘thank’, ‘team’-‘theme’, ‘tick’-
‘thick’, ‘ties’-‘thighs’, and ‘tongs’-‘thongs’). Each word was pronounced individually, but 
preceded and succeeded by the pronunciation of /ə/ in order to ensure a neutral 
articulatory context. In order to achieve this, the participants were shown stimuli consisting 
of a single word surrounded by two schwas (e.g., “ə thank ə”). The order of the words was 
randomized and every word was pronounced twice during the course of the experiment. 
While the speakers were pronouncing these words, we tracked the movement of sensors 
placed on their tongue and lips using a 16-channel Wave electromagnetic articulography 
(EMA) device (Northern Digital Inc.) at a sampling rate of 100 Hz. Sensors were glued to the 
tongue and lips with PeriAcryl 90HV dental glue. Concurrently recorded acoustic data 
(collected using an Audio-Technica AT875R microphone) was automatically synchronized 
with the articulatory data. In post-processing, articulatory data were corrected for head 
movement using four reference sensors (left and right mastoid processes, forehead, upper 
incisor), and aligned to each speaker's occlusal plane based on a biteplane trial (see Wieling 
et al., 2016). 

In this tutorial, we only focus on the anterior-posterior position of the T1 sensor 
(positioned about 0.5-1 cm behind the tongue tip), as articulatory differences between /t/ 
and /θ/ should be most clearly apparent on this trajectory and dimension. The individual 
words were subsequently segmented on the basis of the articulatory gestures (i.e. from the 
gestural onset of the initial sound to the gestural offset of the final sound; using mview; 
Tiede, 2005) and time-normalized between 0 (gestural start of the word) to 1 (gestural end 
of the word). Furthermore, the T1 sensor positions were normalized for each speaker by z-
transforming the positions per speaker (i.e. subtracting the mean and dividing by the 
standard deviation; the mean and standard deviation per speaker were obtained on the 
basis of all (~250) utterances elicited in the context of the broader experiment in which the 
present data was collected). Higher values signify more anterior positions, whereas lower 
values indicate more posterior positions. As generalized additive modeling essentially 
smooths the data, filtering is not necessary. In fact, it is even beneficial to analyze raw 
instead of filtered data, as this will result in less autocorrelation in the residuals (i.e. the 
difference between the fitted values and the actual values; see Section 4.8 for an 
explanation). Consequently, we analyze the raw, unfiltered data in this paper.  

Note that due to the fixed sampling rate (of 100 Hz) the number of sampling points 
per word is dependent on the word’s length. Our present dataset consists of 126,177 
measurement points collected across 1618 trials (62 trials were missing due to sensor 
failure or synchronization issues). The average duration of each word (from the articulatory 
start to the articulatory end) is therefore about 0.78 seconds, yielding on average 78 
measurement points per word production. 
 
4. Generalized additive modeling: step-by-step analysis 
A generalized additive model can be seen as a regression model which is able to model non-
linear patterns. Rather than explaining the basic concepts underlying generalized additive 
modeling at the start, in this tutorial we will explain the concepts when we first need them 
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in the analysis. Importantly, this tutorial will not focus on the underlying mathematics, but 
rather take a more hands-on approach. For a more mathematical background, we refer the 
reader to the excellent, recently revised book of Simon Wood on generalized additive 
modeling (Wood, 2017).  

To create a generalized additive model, we will use the mgcv package in R (version 
1.8-23; Wood, 2011; Wood, 2017). Furthermore, for convenient plotting functions, we will 
use the itsadug R package (version 2.3.0; van Rij et al, 2017). Both can be loaded via the 
library command (e.g., library(mgcv)). (Note that R commands as well as the output 
will be explicitly marked by using a monospace font.) 

Instead of starting immediately with a suitable model for our data, we will start with 
a simple model and make the model gradually more complex, eventually arriving at the 
model appropriate for our data. Particularly, we will first discuss models which do not 
include any random effects, even though this is clearly inappropriate (given that speakers 
pronounce multiple words). Consequently, please keep in mind that the p-values and 
confidence bands will be overconfident for these first few models (e.g., Judd et al., 2012).  

Of course, over time the function calls or function parameters may become 
outdated, while this tutorial text, once published, will remain fixed. Therefore, we will 
endeavor to keep the associated paper package up-to-date. The paper package is available 
at the author’s personal website, http://www.martijnwieling.nl, and includes all data, code, 
and output (direct link: http://www.let.rug.nl/wieling/Tutorial). 
 
4.1 The dataset  
Our dataset, dat, has the following structure (only the first six out of 126,117 lines are 

shown using the command head(dat)): 
 
    Speaker Lang Word Sound  Loc Trial   Time    Pos 

1 VENI_EN_1   EN tick     T Init     1 0.0000 -0.392 

2 VENI_EN_1   EN tick     T Init     1 0.0161 -0.440 

3 VENI_EN_1   EN tick     T Init     1 0.0323 -0.440 

4 VENI_EN_1   EN tick     T Init     1 0.0484 -0.503 

5 VENI_EN_1   EN tick     T Init     1 0.0645 -0.513 

6 VENI_EN_1   EN tick     T Init     1 0.0806 -0.677 

 
The first column (i.e. variable), Speaker, shows the speaker ID, whereas the second 
column, Lang, shows the native language of the speaker (EN for native English speakers, or 
NL for native Dutch speakers). The third column, Word, shows the item label. Column four, 
Sound, contains either T or TH for minimal pairs involving the /t/ or the /θ/, respectively. 
Column five, Loc, contains either the value Init or the value Final, indicating where in 
the word the sound /t/ or /θ/ occurs (e.g., for the words ‘tent’ and ‘tenth’ this is at the end 
of the word). The sixth column, Trial, contains the trial number during which the word 
was pronounced by the speaker. The final two columns, Time and Pos, contain the 
normalized time point (between 0 and 1) and the associated (standardized) anterior 
position of the T1 sensor. 
 
4.2 A first (linear) model 
For simplicity, we will illustrate the generalized additive modeling approach by focusing 
only on the minimal pair ‘tent’-‘tenth’. We will use this example to illustrate all necessary 
concepts, but we will later extend our analysis to all words in Section 5.  

The first model we construct is:  
 

m1 <- bam(Pos ~ Word, data=dat, method="fREML") 
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This model simply estimates the average (constant) anterior position difference (of the T1 
sensor) between the two words (‘tent’ and ‘tenth’), and is shown to illustrate the general 
model specification. We use the function bam to fit a generalized additive model. (The 
alternative function gam becomes prohibitively slow for complex models which are fit to 
datasets exceeding 10,000 data points.) The first parameter of the function is the formula 
reflecting the model specification, in this case: Pos ~ Word. The first variable of the 
formula, Pos, is the dependent variable (the anterior position of the T1 sensor). The 
dependent variable is followed by the tilde (~), after which one or more independent 

variables are added. In this case, the inclusion of a single predictor, Word, allows the model 
to estimate a constant difference between its two levels (‘tenth’ versus ‘tent’; the latter 
word has been set as the reference level of the predictor). The parameter data is set to the 
name of the data frame variable in which the values of the dependent and independent 
variables are stored (in this case: dat). The third parameter (method) specifies the 
smoothing parameter estimation method, which is currently set to the default of "fREML", 
fast restricted maximum likelihood estimation. This is the one of the fastest fitting methods, 
but it is important to keep in mind that models fit with (f)REML cannot be compared when 
the models differ in their fixed effects (i.e. the predictors in which we are generally 
interested; see Section 4.7 for more details). In that case, method should be set to "ML" 
(maximum likelihood estimation), which is much slower. To obtain a summary of the model 
we can use the following command in R:  
 

(smry1 <- summary(m1))  
 
Note that it is generally good practice to store the summary in a variable, since the summary 
of a complex model might take a while to compute. The summary (which is printed since the 
full command is put between parentheses) shows the following: 
 
Family: gaussian  

Link function: identity  

 

Formula: 

Pos ~ Word 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.0654     0.0117    5.57  2.5e-08 *** 

Wordtenth     0.6642     0.0164   40.41  < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.113   Deviance explained = 11.3% 

-REML =  17307  Scale est. = 0.86694   n = 12839 

 
The top lines show that we use a Gaussian model with an identity link function (i.e. we use 
the original, non-transformed, dependent variable), together with the model formula. The 
next block shows the parametric coefficients. As usual in regression, the intercept is the 
value of the dependent variable when all numerical predictors are equal to 0 and nominal 
variables are at their reference level. Since the reference level for the nominal variable 
Word is ‘tent’, this means the average anterior position of the T1 sensor for the word ‘tent’ 
for all speakers is about 0.07. The line associated with Wordtenth (the non-reference 
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level, i.e. tenth, is appended to the variable name) indicates that the anterior position of 
the T1 sensor for the word ‘tenth’ is about 0.66 higher (more anterior) than for the word 
‘tent’, and that this difference is significant with a very small p-value (at least, according to 
this analysis, which does not yet take the random-effects structure into account).  

The final two lines of the summary show the goodness-of-fit statistics. The adjusted 
r2 represents the amount of variance explained by the regression (corrected to use unbiased 
estimators; see Wood, 2006: 29). The deviance explained is a generalization of r2 and will be 
very similar to the actual r2 value for Gaussian models (Wood, 2006: 84). The REML 
(restricted maximum likelihood) value by itself is not informative. The value is only 
meaningful when two models are compared which are fit to the same data, but only differ in 
their random effects. In that case lower values are associated with a model which is a better 
fit to the data. The minus sign (-REML) is added as the REML value is mostly negative. (Note 
that for later models, i.e. those including non-linear patterns, the -REML label is replaced by 
fREML.) The scale (parameter) estimate represents the variance of the residuals. Finally, 
the number of data points which are included in the model are shown (in this case: 12,839).  
  
4.3 Modeling non-linear patterns 
Of course, we are not only interested in a constant T1 anterior position difference between 
the two words, but also in the anterior position of the T1 sensor over time. A generalized 
additive model allows us to assess if there are non-linear patterns in our data by using so-
called smooths. These smooths model non-linear patterns by combining a pre-specified 
number of basis functions. For example, a cubic regression spline smooth constructs a non-
linear pattern by joining several cubic polynomials (see also Sóskuthy, 2017). The default 
type of smooth, which we will use in this tutorial, is the thin plate regression spline. The 
thin plate regression spline is a computationally efficient approximation of the optimal thin 
plate spline (Wood, 2003). The thin plate regression spline models a non-linear pattern by 
combining increasingly complex non-linear basis functions (see Figure 1). Each basis 
function is first multiplied by a coefficient (i.e. the magnitude of the contribution of that 
basis function) and then all resulting patterns are summed to yield the final (potentially) 
non-linear pattern. Note that the first basis function is not incorporated in the actual 
smooth, but is included in the model’s intercept. While modeling non-linear patterns may 
seem to be an approach which is bound to lead to overfitting, GAMs apply a penalization to 
non-linearity (i.e. ‘wigglyness’) to prevent this. Rather than minimizing the error only (i.e. 
the difference between the fitted values and the actual values), GAMs minimize a 
combination between the error and a non-linearity penalty thereby preventing overfitting 
and minimizing prediction error. Consequently, a generalized additive model will only 
identify a non-linear effect if there is substantial support for such a pattern in the data, but 
will instead detect a linear effect if there is only support for a linear pattern. With respect to 
the thin plate regression spline basis functions visualized in Figure 1, especially the more 
complex non-linear patterns will generally be more heavily penalized (i.e. have coefficients 
closer to zero).  

To extend m1 by including a non-linear pattern over time for both groups 
separately, the following generalized additive model can be specified (we exclude the 
method parameter as it is set to the default value of "fREML"): 
 

m2 <- bam(Pos ~ Word + s(Time, by=Word, bs="tp", k=10), data=dat) 
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Figure 1. Example of the first ten basis functions of a thin plate regression spline. The first basis function is not 
part of the smooth, but is included in the model’s intercept. 

 

The text in boldface shows the additional term compared to model m1. The function s sets 
up a smooth over the first parameter (Time), separately for each level of the nominal 
variable indicated by the by-parameter (i.e. Word). The bs-parameter specifies the type of 

smooth, and in this case is set to "tp", the default thin plate regression spline (a cubic 
regression spline can be fit instead by setting bs to the value "cr"). The k-parameter, 

finally, sets the size of the basis dimension. In the example above, by setting k to 10 (the 
default value), there are at most 9 (k – 1) basis functions used in each smooth (see Figure 
1). Since the smooth type and the basis dimension are both set to their default, a simpler 
specification of the smooth is s(Time, by=Word). If the by-parameter were left out, the 
model would fit only a single non-linear pattern, and not a separate pattern per word.  
 The summary of model m2 shows the following (starting from the parametric 
coefficients): 
 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.0655     0.0107    6.14  8.3e-10 *** 

Wordtenth     0.6624     0.0149   44.34  < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                   edf Ref.df     F p-value     

s(Time):Wordtent  7.52   8.46  28.4  <2e-16 *** 

s(Time):Wordtenth 8.55   8.94 276.2  <2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.267   Deviance explained = 26.8% 

fREML =  16112  Scale est. = 0.71584   n = 12839 

 

In addition to the parametric coefficients, now an additional block is added consisting of the 
approximate significance of smooth terms. Here two lines are visible, 
s(Time):Wordtent, representing the smooth for the Word ‘tent’ and 
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s(Time):Wordtenth, reflecting the smooth for the Word ‘tenth’. The p-value associated 
with each smooth indicates if the smooth is significantly different from 0 (which both are in 
this, still suboptimal, analysis). The Ref.df value is the reference number of degrees of 
freedom used for hypothesis testing (on the basis of the associated F-value). The edf value 
reflects the number of effective degrees of freedom, which can be seen as an estimate of 
how many parameters are needed to represent the smooth. (Due to penalization, both edf 
and Ref.df are almost always non-integer.) The edf value is indicative of the amount of 
non-linearity of the smooth. If the edf value for a certain smooth is (close to) 1, this means 
that the pattern is (close to) linear (i.e. cf. the second basis function in Figure 1). A value 
greater than 1 indicates that the pattern is more complex (i.e. non-linear). The edf value is 
limited by k minus one (as the intercept is part of the parametric coefficients). Due to 

penalization, the edf value will generally be lower than its maximum value. If the edf value 
is close to its maximum (which is the case for m2, particularly for the ‘tenth’ smooth), then 
this suggests that a higher basis dimension might be necessary to prevent oversmoothing 
(i.e. oversimplifying the non-linear pattern). To more formally assess this, we can use the 
function gam.check with as input model m2: gam.check(m2). The output of this call is: 

 
Method: fREML   Optimizer: perf newton 

full convergence after 9 iterations. 

Gradient range [-4.61e-07,3.86e-07] 

(score 16112 & scale 0.716). 

Hessian positive definite, eigenvalue range [2.95,6418]. 

Model rank =  20 / 20  

 

Basis dimension (k) checking results. Low p-value (k-index<1) may 

indicate that k is too low, especially if edf is close to k'. 

 

           k'  edf k-index p-value 

s(Time):Wordtent  9.00 7.52       1    0.47 

s(Time):Wordtenth 9.00 8.55       1    0.49 

 
The first lines show that the model converged on a solution. The bottom lines are associated 
with the smooths. It shows the edf values together with k' (i.e. k - 1). If the value of k-

index is lower than 1 and the associated p-value is low, this suggests that the basis 
dimension has been restricted too much. In that case, it is good practice to refit the model 
with the value of k doubled. In this case, there is no reason to do so, as the value of k-

index is not smaller than 1 and the p-value is relatively high.  
In principle, the k-parameter can be set as high as the number of unique values in 

the data, as penalization will result in the appropriate shape. However, allowing for more 
complexity negatively impacts computation time.  
 
4.4 Visualizing GAMs 
While it is possible to summarize a linear pattern in only a single line, this is obviously not 
possible for a non-linear pattern. Correspondingly, visualization is essential to interpret the 
non-linear patterns. The command: plot(m2) yields the visualizations shown in Figure 2 
(abline(h=0) was used to add the horizontal line for the x-axis in both visualizations).  
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Figure 2. Visualization of the non-linear smooths (partial effects) for the word ‘tent’ (left) and the word ‘tenth’ 
(right) of model m2. The pointwise 95%-confidence intervals are shown by the dashed lines. Note that the range 
of the y-axis, showing the anterior position of the T1 sensor, has been set to [-1,2] to be comparable with the 
other plots in this paper. 

It is important to realize that this plotting function only visualizes the two non-linear 
patterns without taking into account anything else in the model. This means that only the 
partial effects are visualized. It is also good to keep in mind that the smooths themselves are 
centered (i.e. move around the x-axis, y = 0). Visualizing the smooths in this way, i.e. as a 
partial effect, is insightful to identify the non-linear patterns, but it does not give any 
information about the relative height of the smooths. For this we need to take into account 
the full model (i.e. the fitted values). Particularly, the intercept and the constant difference 
between the two smooths shown in the parametric part of the model need to be taken into 
account. For this type of visualization, we use the function plot_smooth from the itsadug 
package as follows: 
 

plot_smooth(m2, view="Time", plot_all="Word", rug=FALSE) 

 
The first parameter is the name of the stored model. The parameter view is set to the name 
of the variable visualized on the x-axis. The parameter plot_all should be set to the name 
of the nominal variable if smooths need to be displayed for all levels of this variable. This is 
generally equal to the name of the variable set using the by-parameter in the smooth 
specification. If the parameter is excluded, it only shows a graph for a single level (a 
notification will report which level is shown in case there are multiple levels). The final 
parameter rug is used to show or suppress small vertical lines on the x-axis for all 
individual data points. Since there are many unique values, we suppress these vertical lines 
here by setting the value of the parameter to FALSE. Figure 3 shows the result of this call 
and visualizes both patterns in a single graph. It is clear that the smooths are not centered 
(i.e. they represent full effects, rather than partial effects), and that the ‘tenth’-curve is 
above the ‘tent’-curve, reflecting that the /θ/ is pronounced with more anterior T1 position 
than the /t/. The shapes of the curves are, as would be expected, identical to the partial 
effects shown in Figure 2.  

To visualize the difference, we can use the itsadug function plot_diff as follows:  
 

plot_diff(m2, view="Time", comp=list(Word=c("tenth","tent"))) 
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The parameters are similar to those of the plot_smooth function, with the addition of the 
comp parameter which requires a list of one or more variables together with two levels 
which should be compared. In this case, the first word (i.e. ‘tenth’) is contrasted with the 
second word (i.e. ‘tent’) in the plot. Figure 4 shows this difference.  
 

 
Figure 3. Non-linear smooths (fitted values) for the word ‘tent’ (blue, dark) and the word ‘tenth’ (red, light) of 
model m2. The pointwise 95%-confidence intervals are shown by shaded bands.  

 
Figure 4. Difference between the two (non-linear) smooths comparing the word ‘tenth’ to the word ‘tent’ of 
model m2. The pointwise 95%-confidence interval is shown by a shaded band. When the shaded confidence 
band does not overlap with the x-axis (i.e. the value is significantly different from zero), this is indicated by a red 
line on the x-axis (and vertical dotted lines). 

4.5 Is the additional complexity necessary? 
While it may be obvious from Figures 3 and 4 that the two patterns need to be 
distinguished, it is necessary to assess this statistically. There are three approaches for this, 
each with its own merits.  
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4.5.1 Model comparison 
The first approach is to fit two models, one model without the distinction and one with the 
distinction, and compare the two models, for example using the Akaike Information 
Criterion (AIC; Akaike, 1974) measuring the goodness of fit of the two models while taking 
into account the complexity of the models. In this paper we use a minimum reduction 
threshold of 2 AIC units to select a more complex model (cf. Wieling et al., 2014). The 
itsadug function compareML can be used to compare (the AIC of) two models. As 
mentioned before, models differing in their fixed effects can only be compared when fit with 
the maximum likelihood (ML) estimation method. Consequently, we refit m2 using ML 
(naming this model m2b.ml) and we fit a simpler model (m2a.ml) which includes the 
constant difference between the two words, but only a single smooth. As such, model 
m2a.ml assumes that the pattern over time is the same for both words. Both models 
include Word as a predictor, as it was found to be highly significant in m1.  
 
m2a.ml <- bam(Pos ~ Word + s(Time), data=dat, method="ML") 

m2b.ml <- bam(Pos ~ Word + s(Time, by=Word), data=dat,  

              method="ML") 

 
Note that the k-parameter and the bs-parameter were not explicitly specified, as these 
parameters were set to their default values. We can now compare the two models using:  
 
compareML(m2a.ml,m2b.ml) 

 
This results in the following output: 
 
m2a.ml: Pos ~ Word + s(Time) 

 

m2b.ml: Pos ~ Word + s(Time, by = Word) 

 

Chi-square test of ML scores 

----- 

   Model Score Edf Difference    Df  p.value Sig. 

1 m2a.ml 16505   4                                

2 m2b.ml 16103   6    401.805 2.000  < 2e-16  *** 

 

AIC difference: 823.83, model m2b.ml has lower AIC. 

 
These results show that model m2b.ml is preferred as both its AIC score is much lower and 
the ML score is significantly lower when taking the number of parameters into account. 
Note that in the model comparison procedure, each smooth counts as two degrees of 
freedom (a random and a fixed part), and not the difference in number of effective degrees 
of freedom shown in the model summary.  
 While the model comparison approach is straightforward, it has one clear drawback. 
To compare models differing in their fixed effects, the models need to be fit with maximum 
likelihood estimation. This method is substantially slower than fitting with restricted 
maximum likelihood estimation. Especially with more complex models which also include a 
rich random-effects structure, this may become prohibitive.  
 
4.5.2 Refitting the model with a binary difference smooth 
Another approach to identify whether a group distinction is necessary, is to change the 
specification of our model in such a way that we include a smooth modeling the difference 
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between the two original smooths. Subsequently, if this difference smooth is found to be 
significant, this immediately indicates that the additional complexity of distinguishing two 
groups is required. To fit this new model, we first have to create a new, binary (i.e. dummy), 
variable which is equal to 0 for one level of the nominal variable and 1 for the other level. 
(Note that if there are more than two levels, multiple dummy variables can be used.) We 
now create a variable, IsTenth, which is 1 for the word ‘tenth’ and 0 for the word ‘tent’:  
 
dat$IsTenth <- (dat$Word == "tenth")*1 

 
(In this tutorial, binary predictors can be identified by their variable names starting with 
Is.) We now use this variable in the new model specification. In the specification of m2 each 
smooth modeled the pattern associated with its own level. In the new specification, 
however, there is one smooth representing the reference level, and one smooth 
representing the difference between the reference level and the other level: 
  
m2.bin <- bam(Pos ~ s(Time) + s(Time, by=IsTenth), data=dat) 

 
The summary of this model shows the following:  
 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.0654     0.0107    6.14  8.8e-10 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                 edf Ref.df     F p-value     

s(Time)         7.69   8.49  28.8  <2e-16 *** 

s(Time):IsTenth 9.01   9.66 293.9  <2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.267   Deviance explained = 26.8% 

fREML =  16111  Scale est. = 0.71584   n = 12839 

 
The model specification is now quite different. The first part, s(Time), indicates the 
pattern over time which is included irrespective of the value of IsTenth (i.e. irrespective 

of the word). The second part s(Time, by=IsTenth) has a special interpretation due to 
IsTenth being a binary variable. In this case, the smooth is equal to 0 whenever the binary 
variable equals 0. If the binary by-variable equals 1, it models a (potentially) non-linear 
pattern without a centering constraint. In contrast to a normal centered smooth (e.g., see 
Figure 2), these so-called binary smooths also model the constant difference between the 
two levels. This is also the reason that the predictor IsTenth (or Word) should not be 
included as a fixed-effect factor. 

The interpretation of this model is now as follows. When IsTenth = 0 (i.e. for the word 
‘tent’), the position of the sensor is modeled by s(Time) + 0. This means that the first 

s(Time) represents the smooth for the word ‘tent’ (the reference level). When IsTenth = 
1 (i.e. for the word ‘tenth’), the position of the sensor is modeled by s(Time) + s(Time, 
by=IsTenth). Given that s(Time) models the pattern for the word ‘tent’, and both 

smooths together model the pattern for the word ‘tenth’, it logically follows that s(Time, 
by=IsTenth)models the difference between the non-linear patterns of ‘tenth’ and ‘tent’.  
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That this is indeed the case, can be seen by visualizing the binary difference smooth (i.e. 
the partial effect) directly via plot(m2.bin, select=2, shade=TRUE). Note that the 
parameter select determines which smooth to visualize (in this case, the second smooth 
in the model summary, s(Time):IsTenth), whereas the parameter shade is used to 
denote whether the confidence interval needs to be shaded (i.e. when set to TRUE), or 

whether dashed lines should be used (i.e. when set to FALSE, the default). The graphical 
result of this command is shown in Figure 5, and this graph nicely matches Figure 4. It is 
also clear that the partial effect includes the intercept difference, given that the smooth is 
not centered. Importantly, the model summary shows that the non-linear pattern for the 
difference between the two words is highly significant, thereby alleviating the need for 
model comparison. (But note that we still have ignored the required random-effects 
structure here.)  

Of course, the disadvantage of this approach is that the difference smooth 
simultaneously includes the non-linear as well as the intercept difference between the two 
levels, and it may be desirable to separate these. Particularly, we might be interested in 
assessing if the difference between the two words is significant due to a constant difference, 
a non-linear difference, or a combination of the two. It is also important to keep in mind that 
each distinct binary predictor (e.g., IsTenth) may only occur exactly once in the model 
specification. Otherwise, the model is not able to determine which of the binary difference 
smooths will include the constant difference between the two words. For more details, see 
Section 5.4.2.1 in the supplementary material.  
 

 
Figure 5. Visualization of the binary difference smooth (partial effect) of model m2.bin. Note that this non-
linear pattern is similar to that visualized in Figure 4.  

4.5.3 Refitting the model with an ordered factor difference smooth 
Fortunately, separating the intercept difference and the non-linear difference is possible as 
well. In that case, one can use an ordered factor predictor instead of the binary (dummy) 
predictor. The ordered factor can be created as follows (the ‘O’ is appended here to the 
original variable name to indicate mnemonically that it is an ordered factor):  
 

dat$WordO <- as.ordered(dat$Word) 

contrasts(dat$WordO) <- "contr.treatment" 
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It is essential to set the contrasts of the ordered factor to contrast treatment. This ensures 
that the contrasts of the ordered factor are identical to using a binary predictor (i.e. 
contrasting other levels to a reference level, whose value is set to 0). The model can now be 
fit as follows: 
 

m2.ord <- bam(Pos ~ WordO + s(Time) + s(Time, by=WordO),  

              data=dat) 

 
The model specification is very similar to m2.bin, with two changes. The first is that the 
smooth s(Time, by=IsTenth)is replaced by s(Time, by=WordO). The second is 

that WordO is added as a fixed-effect factor. The reason for this is that the ordered factor 
difference smooth is centered (as the normal smooths), and the constant difference 
between the two words needs to be included explicitly. Fitting the model yields the 
following model summary:  
 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.0655     0.0107    6.14  8.3e-10 *** 

WordOtenth    0.6624     0.0149   44.34  < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                    edf Ref.df    F p-value     

s(Time)            7.69   8.48 28.8  <2e-16 *** 

s(Time):WordOtenth 8.02   8.66 99.8  <2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.267   Deviance explained = 26.8% 

fREML =  16111  Scale est. = 0.71584   n = 12839 

 
This model is essentially identical to model m2.bin (i.e. the fREML score and the 
predictions of the two models are the same). Comparing the two summaries, it is clear that 
model m2.ord has an additional parametric coefficient (similar to the constant difference 

shown in model m2) which models the constant difference between the word ‘tenth’ and 
‘tent’. Comparing the effective degrees of freedom of the final (difference) smooth in both 
models shows that they almost exactly differ by 1 (m2.ord: 8.02, m2.bin: 9.01). This 
reflects the intercept difference, which is included in the final non-centered smooth in the 
binary smooth model, but by a separate parametric coefficient in the ordered factor 
difference smooth model. Visualizing the difference smooth of model m2.ord in Figure 6 
indeed reveals that the pattern is identical to the pattern shown in Figure 5. The only 
exception is that it is centered in Figure 6. In principle, the width of the confidence bands 
will also differ, as the binary smooth incorporates the uncertainty about the intercept 
difference. In this case, however, the intercept difference has a very low standard error (see 
the estimate of WordOtenth in the summary of m2.ord), and this difference is therefore 
visually undistinguishable.  

The advantage of the ordered factor approach over the binary approach is that the 
constant difference (shown in the parametric coefficients part of the model) and the non-
linear difference can be distinguished when using an ordered factor. For both a p-value is 
shown which can be used to assess if the difference between two patterns is caused by a 
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non-linear difference over time, a constant difference, or both. In this case both are highly 
significant, but there are situations in which there might be a lot of certainty about the non-
linear difference, but less so about the intercept difference. In that case, the use of a binary 
difference smooth would show a non-linear pattern with a very wide confidence interval, 
which might lead one to incorrectly conclude that there is insufficient support for a non-
linear pattern. 

 
Figure 6. Visualization of the binary difference smooth (partial effect) of model m2.ord. Note that this non-
linear pattern is identical to that visualized in Figure 5, except that this pattern is centered.  

4.6 Model criticism 
We have already shown part of the output of the function gam.check in Section 4.3. 
Besides checking if the basis dimension for the smooths is sufficient, this function also 
provides important diagnostic information about the model. In particular, the function also 
results in a series of four graphs, shown in Figure 7.  

The top-left graph shows a normal quantile plot of the (deviance) residuals of the 
model. If the residuals are approximately normally distributed, they should approximately 
follow the straight line. Correspondingly, the histogram of the residuals is shown in the 
bottom-left graph. For model m2 the residuals are approximately normally distributed, 
thereby satisfying one of the (Gaussian) model assumptions. The underlying idea of 
requiring a normal distribution of the residuals, is that the part which is left unexplained by 
the model (i.e. the residuals) are assumed to represent random noise and therefore should 
follow a normal distribution. The remaining two plots can be used to assess 
heteroscedasticity (i.e. unequal variance depending on the values of the predictors in the 
top-right graph, or the fitted values in the bottom-right graph). Substantial differences in 
the variability over the range of the values of the predictors and fitted values point to 
problems in the model fitting (as homogeneity of variances is one of the leading 
assumptions of the model), and affect the standard errors of the model. In this case, there 
seems to be only minor heteroscedasticity present, which is unlikely to be a problem. An 
example of clear heteroscedasticity would be revealed by a distinct pattern in the residuals, 
such as a ‘V’-like shape where increasing variability is associated with increasing values of 
the predictor. If there is much heteroscedasticity, including additional predictors or 
transforming the dependent variable may help (see also Baayen, 2008: Section 6.2.3). In 
addition, the function gam (but, presently, not bam) includes the family "gaulss", which is 
able to model unequal variance in the context of a Gaussian model (see also Wood, 2017: 
Section 7.9). Note that both scatter plots also nicely illustrate the dependencies within 
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trajectories (i.e. the spaghetti-like patterns), especially at the top and bottom of the graphs. 
These dependencies will also need to be taken into account (see Section 4.8). 

One essential point, which we have been ignoring up until now, is that in our present 
model every individual data point is treated as being independent. This is, of course, 
completely wrong, given that each participant provides multiple productions. In addition, as 
we are dealing with time series data, sequential points in time will also not be independent. 
When incorrectly treating all data points as being independent, the net effect is that p-
values will be too low and confidence bands will be too thin (e.g., Judd et al., 2012). For an 
appropriate analysis, we need to take these dependencies into account. 

 

 
Figure 7. Diagnostic plots visualizing the distribution of the residuals of model m2 (normal quantile plot: top-
left; histogram: bottom-left) and heteroscedasticity (over time: top-right; depending on fitted values: bottom-
right). See text for details. 

4.7 Mixed-effects regression within the GAM framework 
By using mixed-effects regression we are able to take the structural variability in our data 
into account, and thereby obtain reliable and generalizable results (i.e. results not specific 
to our sample). In mixed-effects regression a distinction is made between fixed-effect 
factors and random-effect factors. Fixed-effect factors are nominal (i.e. factor) variables 
with a small number of levels, out of which all (or most) levels are included in the data. For 
example, both native and non-native speakers are present in our data. In addition, 
numerical predictors are always part of the fixed-effects specification of the model. In a 
regular linear (non-mixed-effects) regression model, the fixed effects are all predictors 
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which are included in the model. Random-effect factors are those factors which introduce 
systematic variation, generally have a large number of levels, and which the researcher 
would like to generalize over. In many studies in linguistics, the random-effect factors 
include participant and word, as the levels of these factors are sampled from a much larger 
population (i.e. other participants and other words could have been included). Note that for 
the present small dataset the predictor Word is a fixed-effect factor, given that we are 
currently only interested in the difference between the two words ‘tenth’ and ‘tent’.  

With respect to random-effect factors, it is important to distinguish random 
intercepts and random slopes. Some speakers (or words) will on average have a more 
anterior tongue position than others, and this structural variability is captured by a by-
speaker (or by-word) random intercept. Failing to take this variability into account 
generally results in overconfident (i.e. too low) p-values (Baayen et al., 2008; Judd et al., 
2012). Random slopes allow the influence of a predictor to vary for each level of the 
random-effect factor. For example, the exact difference between the word ‘tenth’ and ‘tent’ 
may vary per speaker. It is essential to assess which random intercepts and slopes need to 
be included, as failing to include a necessary random slope may yield p-values which are 
overconfident (Gurka et al., 2011). For example, suppose that ninety percent of the speakers 
shows a negligible difference between ‘tenth’ and ‘tent’, and the remaining ten percent 
shows a substantial difference, the average difference might be just above the threshold for 
significance. However, it is clear that in the above situation this difference should not reach 
significance (given that the majority of speakers do not show the effect). Including a by-
speaker random slope for the word contrast would account for this individual variability 
and result in a more appropriate (higher) p-value. Of course, if there is almost no individual 
variability, model comparison will reveal that the random slope is unnecessary. For more 
information about the merits about mixed-effects regression, we refer the interested reader 
to Baayen et al. (2008), Baayen (2008), Winter (2013), and Winter & Wieling (2016).  

We would like to remark that even though the paper of Barr et al. (2013) was 
important in that it made researchers aware that a random-effects structure only consisting 
of random intercepts is often problematic, we are not in favor of an approach in which the 
maximally possible random-effects structure is used (Barr et al., 2013). Instead, we are 
proponents of using model selection (e.g., used by Wieling et al., 2011, 2014) to determine 
the optimal random-effects structure appropriate for the data. The advantage of such an 
approach is that it does not result in a lack of power (as the maximal approach does; 
Matuschek et al., 2017) and is more suitable to be used in conjunction with generalized 
additive modeling (Baayen et al., 2017).  

Within the generalized additive modeling framework, random intercepts, random 
slopes and non-linear random effects can be included. In the following, we will see how to 
construct these generalized additive (mixed) models. 
 
4.7.1 Including a random intercept 
To add a random intercept per speaker to a GAM, the following model specification can be 
used (the difference with respect to m2, i.e. the random intercept, is again marked in 
boldface):  
 
m3 <- bam(Pos ~ Word + s(Time, by=Word) + s(Speaker,bs="re"),  

          data=dat) 

 
As random effects and smooths are linked (see Wood, 2017), random intercepts and slopes 
may be modeled by smooths. For these random-effect smooths the basis needs to be set to 
the value "re". The first parameter of the random-effect smooth is the random-effect 
factor. If there is a second parameter (besides the obligatory bs="re" part), this is 
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interpreted as a random slope for the random-effect factor. If there is only a single 
parameter (as in m3, above), it is interpreted to be a random intercept. As readers are likely 
more familiar with the lme4 (Bates et al., 2014) function lmer to specify random effects, the 
analogue of s(Speaker,bs="re") in lmer would be (1|Speaker). The summary of 
m3 shows the following:  
 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.0919     0.0680    1.35     0.18     

Wordtenth     0.6799     0.0134   50.91   <2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                    edf Ref.df     F p-value     

s(Time):Wordtent   7.77   8.61  36.3  <2e-16 *** 

s(Time):Wordtenth  8.64   8.96 352.7  <2e-16 *** 

s(Speaker)        40.58  41.00  86.9  <2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.427   Deviance explained = 42.9% 

fREML =  14634  Scale est. = 0.56012   n = 12839 

 

One additional line, s(Speaker), has been added to the list of smooth terms. The Ref.df 
value shows the number of speakers minus one. Due to the penalization (i.e. effectively 
representing shrinkage3 in the case of mixed-effects regression; see Baayen et al., 2008) the 
estimated degrees of freedom will generally be somewhat lower than the value of Ref.df. 
Importantly, however, the p-value associated with the random-effect smooth conveniently 
indicates if the random intercept is necessary or not (in this case it is necessary), alleviating 
the need for model comparison to assess the inclusion of random effects. Note that a clear 
consequence of including the random intercept for speaker is that the estimate of the 
intercept becomes much less certain (i.e. the standard error increases from about 0.01 to 
0.07).  

To visualize the effect of the random intercepts on the non-linear patterns, Figure 8 
shows both smooths (left) as well as their difference (right). The commands to obtain these 
graphs are similar to those shown above for model m2 (and can be found in the 
supplementary material). There is one important difference, however. Both the 
plot_smooth and the plot_diff functions will by default show the full effects. 
Therefore, they will also select a specific speaker for which the visualized pattern is 
applicable. As we are not interested in specific speakers (given that speaker is a random-
effect factor), we have to set the parameter rm.ranef to TRUE (this is reflected by the text 
“excl. random” at the right edge of the graphs in Figure 8). For example, the call to 
plot_smooth becomes: 

 
 

                                                        
3 Shrinkage ensures that the random intercepts (and slopes) are estimated to be a bit closer to the 
population mean than the actual average values of the individual. This ensures that the influence of 
outliers is reduced, while it also yields better estimates of the individuals’ performance (Efron & 
Morris, 1977). 
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plot_smooth(m3, view="Time", plot_all="Word", rug=FALSE,  

            rm.ranef=TRUE) 

 
Comparing the left graph of Figure 8 to Figure 3 shows that the confidence bands of both 
non-linear patterns have become wider (due to the increased uncertainty about the 
intercept). Comparing the right graph of Figure 8 to Figure 4, however, does not reveal such 
a difference. Given that the model does not include individual variability in the difference 
between ‘tenth’ versus ‘tent’, this is not surprising. 

 

 
Figure 8. Left: non-linear smooths (fitted values) for the word ‘tent’ (blue, dark) and the word ‘tenth’ (red, light) 
in model m3. Shaded bands represent the pointwise 95%-confidence interval. Right: Differences between the 
two (non-linear) smooths comparing the word ‘tenth’ to the word ‘tent’. When the shaded pointwise 95%-
confidence interval does not overlap with the x-axis (i.e. the value is significantly different from zero), this is 
indicated by a red line on the x-axis (and vertical dotted lines).  

4.7.2 Including a random slope 
In similar fashion, we may include a by-speaker linear random slope (which would 
correspond to tilting the non-linear pattern) for the two-word-contrast (Word) as follows:  
 
m4 <- bam(Pos ~ Word + s(Time, by=Word) + s(Speaker,bs="re") +  

          s(Speaker,Word,bs="re"), data=dat) 

 

In the lmer specification this random slope would be represented by 
(0+Word|Speaker). Unfortunately, in the GAM specification, it is not possible to model a 
correlation between random intercepts and random slopes (i.e. an lmer specification such 
as (1+Word|Speaker) is not possible). At present this is a drawback compared to linear 
mixed-effects regression, at least when linear random slopes are used (but see 4.7.3, below). 
The summary of model m4 is as follows. 
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Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.1091     0.0828    1.32     0.19     

Wordtenth     0.6195     0.1032    6.00    2e-09 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                    edf Ref.df      F p-value     

s(Time):Wordtent   7.95   8.71   44.6 < 2e-16 *** 

s(Time):Wordtenth  8.70   8.97  433.0 < 2e-16 *** 

s(Speaker)        15.48  41.00 1080.1    0.12     

s(Speaker,Word)   64.59  81.00  960.4 2.9e-05 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.534   Deviance explained = 53.7% 

fREML =  13397  Scale est. = 0.45546   n = 12839 

 
The summary shows an additional line, s(Speaker,Word), which is clearly significant, 
thereby supporting the inclusion of the random slope. The random intercept has become 
non-significant, indicating that most of the subject-variability is now captured by the 
random slope (i.e. distinguishing the two words). As before, adding a more appropriate 
random-effects structure affects the fixed effects (the supplementary material shows the 
output of compareML(m3,m4): m4 is a significant improvement over m3, p < 0.001). 
Specifically, the intercept (i.e. the average anterior position of the T1 sensor for the word 
‘tent’) does not differ significantly from 0 anymore due to the larger uncertainty, and also 
the constant difference between the word ‘tenth’ and ‘tent’ is associated with more 
uncertainty (i.e. much larger standard errors).  
  
 

 
Figure 9. Non-linear smooths and difference comparing ‘tenth’ to ‘tent’ for model m4. See details in Fig. 8 
caption. 
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To visualize the effect of the additional random slope on the non-linear patterns, Figure 9 
shows both smooths (left) as well as their difference (right). (As before, the parameter 
rm.ranef has been set to TRUE in the plotting functions.) Comparing the left graph of 
Figure 9 to the left graph of Figure 8, the confidence bands are slightly wider, reflecting the 
increased standard errors in the model summary. The greatest change can be observed with 
respect to confidence bands of the difference, which have become much wider comparing 
the right graph of Figure 9 (m4) to the right graph of Figure 8 (m3). This, of course, is in line 
with allowing (necessary) variability in the difference between the two words ‘tenth’ and 
‘tent’, and it mirrors the pattern visible in the model summary of m4.  

 
4.7.3 Including non-linear random effects 
While we are now able to model random intercepts and random slopes, our present model 
does not yet take the individual (non-linear) variability in the anterior position of the T1 
sensor over time into account. Consequently, there is a need for a non-linear random effect. 
Fortunately, this is possible within the generalized additive modeling framework. The 
following model specification illustrates how this can be achieved:  
 
m5 <- bam(Pos ~ Word + s(Time, by=Word) + s(Speaker,Word,bs="re")  

          + s(Time,Speaker,bs="fs",m=1), data=dat) 

 
In this model the random intercept part has been replaced by the smooth specification 
s(Time,Speaker,bs="fs",m=1). This is a so-called factor smooth (hence the "fs" 
basis) which models a (potentially) non-linear difference over time (the first parameter) 
with respect to the general time pattern for each of the speakers (the second parameter: the 
random-effect factor). (Note the different ordering compared to the random intercepts and 
slopes.) The final parameter, m, indicates the order of the non-linearity penalty. In this case 
it is set to 1, which means that the first derivative of the smooth (i.e. the speed) is penalized, 
rather than the, default, second derivative of the smooth (i.e. the acceleration). Effectively, 
this results in factor smooths which are penalized more strongly than regular smooths. This, 
in turn, means that the estimated non-linear differences for the levels of the random-effect 
factor are assumed to be somewhat less ‘wiggly’ than their actual patterns. This reduced 
non-linearity therefore lines up nicely with the idea of shrinkage of the random effects (see 
footnote 3). Importantly, the factor smooths are not centered (i.e. they contain an intercept 
shift), and therefore the by-speaker random intercept term was dropped from the model 
specification. The summary of model m5 is shown below:  
  
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.0768     0.0967    0.79     0.43     

Wordtenth     0.6196     0.1032    6.00    2e-09 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                     edf Ref.df       F p-value     

s(Time):Wordtent    7.47   8.03    9.61 2.6e-13 *** 

s(Time):Wordtenth   8.59   8.81   44.66 < 2e-16 *** 

s(Speaker,Word)    62.42  81.00   52.09 < 2e-16 *** 

s(Time,Speaker)   297.13 377.00 1168.20 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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R-sq.(adj) =   0.67   Deviance explained = 67.9% 

fREML =  11601  Scale est. = 0.32275   n = 12839 

 
The final line, s(Time,Speaker), of the model shows the factor smooth (i.e. the by-
subject non-linear random effect for time) and the associated p-value clearly shows it is 
necessary to include this random effect in the model. A visualization of these factor smooths 
can be obtained via plot(m5, select=4) and is shown in Figure 10. Comparing the 
different random-effects structure of models m4 and m5 (using compareML(m4,m5); the 
default fREML estimation method now is appropriate as only random effects are compared) 
shows m5 is preferred over m4.  
 
Chi-square test of fREML scores 

----- 

  Model     Score Edf    Chisq    Df  p.value Sig. 

1    m4 11732.645   8                              

2    m5  9755.733   9 1976.912 1.000  < 2e-16  *** 

 

AIC difference: 4453.17, model m5 has lower AIC. 

 

Figure 11 shows the impact of this more complex random-effects structure on the resulting 
smooths (left), as well as their difference (right). Comparing the left graph of Figure 11 to 
the left graph of Figure 9, the confidence bands again are slightly wider, and the patterns 
also become slightly different. This is a logical consequence of allowing variability in the 
specific tongue trajectories for each individual speaker. By contrast, the confidence bands 
around the difference smooth have not changed. However, this is unsurprising given that m5 
only models a single non-linear pattern over time, and the model does not yet allow for 
individual variability over time in distinguishing ‘tenth’ from ‘tent’.  

To also include this type of (essential) random-effect variability, we fit the following 
model: 
 
m6 <- bam(Pos ~ Word + s(Time, by=Word) +  

          s(Time,Speaker,by=Word,bs="fs",m=1), data=dat)  

 

 

 
Figure 10. Visualization of by-subject factor smooths over time of model m5.   
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The new model specification contains two changes. The first change consists of adding 
by=Word to the factor smooth specification. The second change is dropping the by-speaker 
random slope for Word. The reason for dropping the speaker-based variability in the 
constant difference between ‘tenth’ versus ‘tent’, is that this constant difference is already 
incorporated by the non-centered factor smooth (i.e. by including two non-centered 
smooths per speaker).  

The summary of the model shows the following:  
 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.0844     0.0968    0.87     0.38     

Wordtenth     0.5902     0.1427    4.14  3.6e-05 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                             edf Ref.df     F p-value     

s(Time):Wordtent            7.59   8.00  9.41 4.4e-13 *** 

s(Time):Wordtenth           8.42   8.58 23.44 < 2e-16 *** 

s(Time,Speaker):Wordtent  315.66 377.00 38.05 < 2e-16 *** 

s(Time,Speaker):Wordtenth 327.18 368.00 43.13 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.782   Deviance explained = 79.3% 

fREML = 9397.5  Scale est. = 0.21325   n = 12839 

 
 

 
Figure 11. Non-linear smooths and difference comparing ‘tenth’ to ‘tent’ for model m5. See details in Fig. 8 
caption.  
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It is clear from the summary that both factor smooths (one for each word) are necessary. 
Furthermore, model comparison (see supplementary material) also revealed that the 
additional complexity of model m6 over model m5 was warranted. Figure 12 visualizes the 
associated non-linear patterns and mainly shows that the confidence bands for the non-
linear difference distinguishing ‘tenth’ from ‘tent’ have become much wider compared to 
Figure 11 (i.e. m5). Of course, this is expected given that m6 allows for individual variability 
in the articulatory trajectories over time for the two words.  

 

 
Figure 12. Non-linear smooths and difference comparing ‘tenth’ to ‘tent’ for model m6. See details in Fig. 8 
caption.  

4.8 Taking into account autocorrelation in the residuals 
In the previous section, we have accounted for the speaker-specific variability in the data, 
by using a (non-linear) mixed-effects regression approach. However, as we are analyzing 
time-series data, there is another type of dependency involved. Specifically, the residuals 
(i.e. the difference between the fitted values and the actual values) of subsequent time 
points in the time series will be correlated. How severe this so-called autocorrelation is, can 
be seen in Figure 13. This graph was obtained by using the itsadug function acf_resid:  
 

m6acf <- acf_resid(m6) 

 

The first vertical line in this autocorrelation graph is always at height 1 (i.e. each point has a 
correlation of 1 with itself). The second line shows the amount of autocorrelation present at 
a lag of 1 (i.e. comparing measurements at time t-1 and time t). In Figure 13, this value is 
about 0.91, which means that each additional time point only yields relatively little 
additional information. (There is also autocorrelation present at higher lags, but this may 
(partly) be caused by the autocorrelation at lag 1.) If this dependency is not brought into the 
model, it is likely that the strength of the effects is severely overestimated. Fortunately, the 
function bam is able to incorporate an AR(1) error model for the residuals. While an AR(1) 
model is a very simple model of autocorrelation and may not be adequate to alleviate the 
autocorrelation problem, in most cases this simple approach seems to be sufficient.  
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Figure 13. Autocorrelation graph for model m6. The height of the second line indicates the amount of 
autocorrelation at lag 1. 

Note that autocorrelation can only be assessed adequately if the dataset is ordered 
(otherwise the autocorrelation graph is useless as a diagnostic tool). This means that for 
each speaker and each word pronunciation (and sensor, and axis, if applicable), the rows 
have to be ordered by (increasing) time. Consequently, in the dataset each separate time 
series will have to be positioned one after another. To make sure the data is ordered, it is 
useful to use the itsadug function start_event: 
 
dat <- start_event(dat, event=c("Speaker","Trial")) 

 
The function start_event assumes there is a column Time in dataset dat, including the 
time points associated with each data point. It subsequently orders the data by Time for 

each individual time series as determined by the event parameter (in this case, there is a 
single articulatory trajectory of the T1 sensor in the anterior-posterior dimension for every 
combination of Speaker and Trial). In addition, this function adds a column 
start.event to the dataset which is equal to TRUE whenever the row is associated with 

the first data point of every time series and equal to FALSE otherwise. This column is useful 
to identify which subsequent points are expected to show autocorrelation in the residuals. 
Whenever the value of the column start.event equals FALSE, the residual at that point 
is assumed to correlate with the residual at the previous point, whereas if the column 
equals TRUE this is not expected to be the case (i.e. the residual of the first point in a new 
trial is not assumed to be correlated with the residual of the last point of the previous trial, 
as the words were not pronounced immediately after one another).  

As indicated, the function bam is able to incorporate an AR(1) error model for the 
residuals in a Gaussian model. There are two additional parameters which need to be set for 
this. The first parameter is rho. This is an estimate of the amount of autocorrelation. Using 
the height of the second line in the autocorrelation graph (i.e. m6acf[2]) is generally a 
good estimate. The second parameter is AR.start which equals TRUE at the start of a new 

time series and FALSE otherwise. This parameter should be set to the column 
start.event of the data frame (in our case, dat) if the function start_event was 
used. The revised bam function call now becomes:  
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m7 <- bam(Pos ~ Word + s(Time, by=Word) +  

          s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,   

          rho=m6acf[2], AR.start=dat$start.event)  

 
Inspecting the new autocorrelation graph in Figure 14, shows that the autocorrelation has 
been removed almost completely. As the autocorrelation at lag 1 is slightly negative, a lower 
rho value might seem a better option. However, the supplementary material (model 
m7.alt) shows that this resulted in an increase of the autocorrelation at higher lags. We 
therefore used a rho value of 0.912 in all subsequent models in Section 4. In our 
experience, setting the rho value to the autocorrelation at lag 1 as determined via the acf 
function is the best approach to correct for autocorrelation, and this is the approach we use 
throughout the manuscript. 

The summary of model m7 shows the following: 
 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.0791     0.0875     0.9     0.37     

Wordtenth     0.5814     0.1292     4.5  6.8e-06 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                             edf Ref.df     F p-value     

s(Time):Wordtent            7.47   8.12  9.00 2.8e-12 *** 

s(Time):Wordtenth           8.32   8.60 22.05 < 2e-16 *** 

s(Time,Speaker):Wordtent  229.34 377.00  2.87 < 2e-16 *** 

s(Time,Speaker):Wordtenth 267.85 368.00  3.84 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.763   Deviance explained = 77.3% 

fREML = -3286.8  Scale est. = 0.18714   n = 12839 

 
 

 
Figure 14. Autocorrelation graph for model m7 (rho = 0.912). The height of the second line indicates the 
amount of autocorrelation at lag 1. 



28 
 

The visualization in Figure 15 shows that including the autocorrelation in the residuals has 
had only a negligible influence on the standard errors (the F-values associated with the 
smooths in the model summaries are only slightly lower). Note that the explained deviance 
has dropped slightly. This is due to the model taking into account the autocorrelation, and 
therefore predicting the actual values slightly less well than before. 
 

 
Figure 15. Non-linear smooths and difference comparing ‘tenth’ to ‘tent’ for model m7 (using a rho value of 
0.912). See details in Fig. 8 caption.  

4.9 Including a two-dimensional interaction 
Frequently, it is very insightful to look at interactions which involve two numerical 
predictors. To illustrate how two-dimensional non-linear interactions can be included, we 
will extend the above model by investigating if there are trial effects present in our data. 
Trial effects are frequently included in the analysis, in order to take into account effects of 
repetition (Winter, 2005), fatigue, attention, or learning (Baayen et al., 2017). While this 
interaction is not particularly interesting for our data, given that we only focus on a few 
trials (in this example, only four trials), we nevertheless include it here to illustrate the 
concepts necessary to understand two-dimensional non-linear interactions. 
 A thin plate regression spline can also be used to model non-linear interactions. 
However, it is essential that the predictors involved in a thin plate regression spline 
interaction are isotropic, i.e. they need to be measured on the same scale (such as longitude 
and latitude; see Wieling et al., 2011 for an example). In a thin plate regression spline the 
amount of non-linearity associated with a unit change in the value of each incorporated 
predictor is assumed to be identical, and this assumption is only valid for isotropic 
predictors. 

To model predictors which are not on the same scale (such as Time and Trial in 
our case), a tensor product smooth interaction (in short, tensor product) can be used. A 
tensor product essentially models a non-linear interaction by allowing the coefficients 
underlying the smooth for one variable to vary non-linearly depending on the value of the 
other variable (see Wood, 2017: 227-232). In mgcv, a tensor product can be included in the 
model specification by using the te function. By default, the te-constructor uses two 

(default) 5-dimensional cubic regression splines (bs="cr"). Consequently, the k-
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parameter for each variable is limited to 5: k=5. Extending model m7 to include a two 
dimensional interaction between Time and Trial thus results in the following function 
call: 

 
m8 <- bam(Pos ~ Word + te(Time, Trial, by=Word) +  

          s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,   

          rho=0.912, AR.start=dat$start.event) 

 
The summary shows the following:  
 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.0479     0.0895    0.54     0.59     

Wordtenth     0.6084     0.1328    4.58  4.6e-06 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                             edf Ref.df     F p-value     

te(Time,Trial):Wordtent     9.16  10.03  8.08 3.7e-13 *** 

te(Time,Trial):Wordtenth    8.57   8.78 16.20 < 2e-16 *** 

s(Time,Speaker):Wordtent  231.45 377.00  2.89 < 2e-16 *** 

s(Time,Speaker):Wordtenth 278.97 368.00  4.11 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.777   Deviance explained = 78.6% 

fREML = -3282.8  Scale est. = 0.18683   n = 12839 
 
It is clear that the s-terms have been replaced by te-terms in the summary. In both cases, 
however, the effective degrees of freedom of the tensor products have not changed much. Of 
course, visualization is essential to see what is going on. As we need to visualize two-
dimensional patterns, we have to use other visualization functions than before. In 
particular, we will use the itsadug functions fvisgam and plot_diff2 which both yield 
contour plots. (Note that the function fvisgam differs from the mgcv function vis.gam in 
that it allows random effects to be excluded from the visualization.)  
 The commands to visualize the contour plots for ‘tent’ and for ‘tenth’, as well as their 
difference are as follows: 
 
fvisgam(m8, view=c("Time","Trial"), cond=list(Word=c("tent")),  

        main='m8: tent', rm.ranef=TRUE,  

        zlim=c(-0.9,1.6),color='gray') 

  

fvisgam(m8, view=c("Time","Trial"), cond=list(Word=c("tenth")),  

        main='m8: tenth', rm.ranef=TRUE, 

        zlim=c(-0.9,1.6), color='gray')  

 

plot_diff2(m8, view=c("Time","Trial"),  

           comp=list(Word=c("tenth","tent")), rm.ranef=TRUE, 

           main='Difference tenth - tent', 

           color='gray') 
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For both functions, the first parameter is the model name. The second parameter, view, 
should contain two variable names included in the tensor product of the model. The first 
variable is plotted at the x-axis, whereas the second variable is plotted at the y-axis. Other 
common parameters include main, which sets the title of the plot, rm.ranef, which (if set 
to TRUE) excludes the influence of the random effects when creating the visualization, 
color, which sets the color scheme (in this case, grayscale), and zlim, which sets the 
lower and upper limit of the color range.  

Furthermore, the function fvisgam has an additional cond parameter, which is a 
named list containing the value of the predictors in the model which should be fixed (i.e. in 
this case only the specific word). The function plot_diff2 has a comp parameter to 
determine which two levels should be compared (see explanation for plot_diff above). 
The resulting three contour plots are shown in Figure 16. Lighter shades of gray indicate 
higher values (i.e. a more anterior T1 position), whereas darker shades of gray indicate 
lower values. Black contour lines connect points with identical values. For example, the 
contour plot associated with ‘tent’, shows two peaks over time (around 0.2 and 0.7), which 
are reduced in size for later trials. By contrast, the contour plot associated with ‘tenth’ 
shows a single, higher peak over time (around 0.7) which gets lower (and somewhat 
delayed) for later trials. To further help interpretation, Figure 17 shows a visualization of 
the difference contour plot together with the associated one-dimensional differences 
smooths for three trials (trial 500, 300, and 100). The one-dimensional graphs have been 
generated using the function plot_diff with the parameter cond set to (e.g.,) 
list(Trial=100). In this case, all three one-dimensional graphs show a very similar 
pattern, with only slightly higher and earlier peaks for earlier trials. (The black dotted lines 
have been added to each graph to make these differences more apparent.) 

The two-dimensional tensor product of time and trial implicitly incorporates three 
parts: an effect over time, an effect over trial, and the pure interaction between the two. 
Inspecting Figure 16 and 17, it does not appear there is a very strong influence of trial. 
Consequently, it makes sense to see whether an effect of trial would need to be included at 
all. For this reason, it is useful to decompose the tensor product into its separate parts. 
While we already have seen how to model one-dimensional smooths, we need to introduce 
a new constructor, ti, to model a pure interaction term. This constructor, with identical 

syntax as the te-constructor, models the pure interaction between the variables. The 
specification of the model (m8.dc) of the decomposed tensor product is as follows: 
 
m8.dc <- bam(Pos ~ Word + s(Time, by=Word) + s(Trial, by=Word) +  

             ti(Time, Trial, by=Word) +  

             s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,   

             rho=0.912, AR.start=dat$start.event) 

 
The summary of the model is as follows: 
 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   0.0550     0.0894    0.62     0.54     

Wordtenth     0.6361     0.1314    4.84  1.3e-06 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                             edf Ref.df     F p-value     

s(Time):Wordtent            7.47   8.13  9.02 2.6e-12 *** 
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s(Time):Wordtenth           8.32   8.60 22.01 < 2e-16 *** 

s(Trial):Wordtent           1.00   1.00 16.03 6.3e-05 *** 

s(Trial):Wordtenth          1.62   1.90  8.37 0.00019 *** 

ti(Time,Trial):Wordtent     1.00   1.00  3.58 0.05865 .   

ti(Time,Trial):Wordtenth    1.67   2.03  2.31 0.09316 .   

s(Time,Speaker):Wordtent  229.36 377.00  2.89 < 2e-16 *** 

s(Time,Speaker):Wordtenth 268.42 368.00  3.89 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.778   Deviance explained = 78.7% 

fREML = -3300.8  Scale est. = 0.18649   n = 12839 

 

 
Figure 16. Contour plots visualizing the non-linear interactions between time and trial for the word ‘tent’ (top-
left), ‘tenth’ (top-right) and their difference (bottom-left).  
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Figure 17. Difference contour plot showing the interaction between time and trial (left). The plots on the right 
show the corresponding non-linear pattern over time for three distinct trials: 500 (top row), 300 (middle row) 
and 100 (bottom row). The dotted black lines at (1.035, 0.745) facilitate comparison between the three graphs. 
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Clearly, the main effects of time and trial for both words are still significant. While the 
smooths over time are non-linear (high edf), the smooths over trial are (almost) linear 
(edf close to 1). Furthermore, the pure interaction between time and trial is not significant. 
The relative size of the effects (excluding the non-significant interactions) can be visualized 
using the mgcv plot function and is shown in Figure 18. It is clear that the influence of the 
trial number on the anterior position of the T1 sensor is relatively modest and (almost) 
linear. While the significant trial effects may seem interesting, we hasten to add that we only 
investigate four trials per speaker in this example. Therefore, any trial effects we observe 
here will necessarily be linked to where in the experiment each speaker encountered the 
two words, and will almost certainly not be representative of real trial effects. 
Consequently, and also to keep the models relatively simple, we will exclude trial effects in 
the remaining part of this tutorial. 

 
Figure 18. Visualization of the partial effects of model m8.dc over time (top row), and trial (bottom row) for 
the word ‘tent’ (left column) and ‘tenth’ (right column). The shaded bands in the top two rows denote the 
pointwise 95%-confidence intervals.  

4.10 Including the language difference 
We only considered the anterior-posterior T1 articulation difference between the two 
words in the models above, but a more relevant question is how this difference varies 
depending on the language of the speaker. As the sound /θ/ does not occur in the Dutch 
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language, we are particularly interested in assessing if Dutch speakers show a different (i.e. 
smaller) contrast between a minimal pair involving /θ/ versus /t/ than the English 
speakers. Whereas a naive approach to achieve this might be to fit two separate models 
(one for each language) and visually compare the patterns, this approach is not adequate. 
By fitting two separate models it is not possible to evaluate whether the additional 
complexity (i.e. the addition of the language factor) is warranted. For example, while a 
visual comparison (even when fitting a single model for all data) may show that the 
patterns are relatively similar, there may be enough evidence to conclude that the small 
difference between them is real. Alternatively, the two patterns may seem quite different, 
but if the confidence bands are very wide, the difference between the two patterns may 
never be significantly different from zero. Note that a difference in significance of the 
patterns is also not informative. For example, even though the confidence bands for the 
non-linear difference between might be completely overlapping with the x-axis for one 
group, but not for the other group, they may still be statistically indistinguishable. For 
example, the patterns may be identical, with simply more variability (i.e. wider confidence 
bands) for one group than the other. In sum, a visual inspection does not provide enough 
information to decide if the additional complexity is necessary. Instead, we follow the 
approach put forward in Section 4.5 and more formally evaluate whether the additional 
complexity is warranted. 

To distinguish the two language groups, we first create a new variable which is the 
interaction between Word and Lang (i.e. having four levels, the words ‘tent’ and ‘tenth’ for 
both English and Dutch speakers):  
 
dat$WordLang <- interaction(dat$Word, dat$Lang) 
 
We now use this new variable in our model instead of Word: 
 
m9 <- bam(Pos ~ WordLang + s(Time, by=WordLang) +  

          s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,   

          rho=0.912, AR.start=dat$start.event)  

 
Comparing model m9 to model m7 (both now fitted with method="ML" and named m7.ml 
and m9.ml) shows that it is necessary to include a distinction between languages: 
 
m7.ml: Pos ~ Word + s(Time, by = Word) + s(Time, Speaker, by =  

       Word, bs = "fs", m = 1) 

 

m9.ml: Pos ~ WordLang + s(Time, by = WordLang) + s(Time, Speaker,  

       by = Word, bs = "fs", m = 1) 

 

Chi-square test of ML scores 

----- 

  Model Score Edf Difference    Df   p.value Sig. 

1 m7.ml -3292  10                                 

2 m9.ml -3307  16     14.984 6.000 3.986e-05  *** 

 

AIC difference: 7.62, model m9.ml has lower AIC. 

 
The summary of model m9 now shows three contrasts with respect to the intercept (in this 
case the reference level is the word ‘tent’ for the native English speakers) and four smooths, 
one for each level of the new nominal variable.  
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Parametric coefficients: 

                 Estimate Std. Error t value Pr(>|t|)     

(Intercept)        -0.098      0.119   -0.82    0.410     

WordLangtenth.EN    0.732      0.174    4.20  2.7e-05 *** 

WordLangtent.NL     0.362      0.173    2.09    0.037 *   

WordLangtenth.NL    0.790      0.182    4.34  1.4e-05 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                             edf Ref.df     F p-value     

s(Time):WordLangtent.EN     3.84   4.53  2.27   0.045 *   

s(Time):WordLangtenth.EN    7.95   8.37 15.77 < 2e-16 *** 

s(Time):WordLangtent.NL     7.48   8.15 10.67 1.9e-15 *** 

s(Time):WordLangtenth.NL    7.73   8.21 11.72 < 2e-16 *** 

s(Time,Speaker):Wordtent  218.56 376.00  2.67 < 2e-16 *** 

s(Time,Speaker):Wordtenth 255.53 367.00  3.49 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.763   Deviance explained = 77.2% 

fREML =  -3299  Scale est. = 0.18711   n = 12839 

 
The results of this model are shown in Figure 19. The top row shows the individual smooths 
for the English speakers (top-left) as well as the difference (top-right) which reveals a clear 
and significant pattern. The bottom row shows the same graphs for the Dutch speakers, 
with a much smaller difference between the two words. Whether or not the latter (small) 
difference is significant, should be assessed formally, however.   

For this reason, we re-specify the model using ordered factors. As we want to 
evaluate the difference between ‘tenth’ and ‘tent’ for both the English and Dutch speakers, 
separately, we create two reference levels via s(Time, by=Lang) + Lang, one for each 

group. We then create two separate ordered factors. One factor (ENTenthO) is set to 
"TRUE" whenever the word equals ‘tenth’ and the language is English and "FALSE" 
otherwise, whereas the other factor (NLTenthO) is set to "TRUE" whenever the word 

equals ‘tenth’ and the native language is Dutch and "FALSE" otherwise. The complete 
model specification, including the creation of the two ordered factors is as follows: 

 
dat$ENTenthO <- as.ordered(dat$Lang == "EN" &  

                           dat$Word == "tenth")  

contrasts(dat$ENTenthO) <- "contr.treatment" 

 
dat$NLTenthO <- as.ordered(dat$Lang == "NL" &  

                           dat$Word == "tenth")  

contrasts(dat$NLTenthO) <- "contr.treatment" 
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Figure 19. Non-linear smooths and difference comparing ‘tenth’ to ‘tent’ for model m9 for both English (top 
row) and Dutch speakers (bottom row). See details in Fig. 8 caption.   

m9.ord <- bam(Pos ~ Lang + ENTenthO + NLTenthO +  

              s(Time, by=Lang) + s(Time, by=ENTenthO) +  

              s(Time, by=NLTenthO, k=20) +  

              s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,   

              rho=0.912, AR.start=dat$start.event)  

 
Note that the ordered factor difference smooth for the Dutch speakers was oversmoothed 
(with an edf of about 2) compared to Figure 19. Consequently, we increased the k-value to 
20. Note, however, that this did not affect the global pattern of results, nor our conclusion. 
The summary of model m9.ord is as follows: 
 
Parametric coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)   -0.0939     0.1190   -0.79    0.430     
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LangNL         0.3638     0.1733    2.10    0.036 *   

ENTenthOTRUE   0.7282     0.1739    4.19  2.8e-05 *** 

NLTenthOTRUE   0.4471     0.1862    2.40    0.016 *   

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                             edf Ref.df     F p-value     

s(Time):LangEN              4.32   5.05  2.38   0.037 *   

s(Time):LangNL              7.85   8.33 12.59 < 2e-16 *** 

s(Time):ENTenthOTRUE        7.66   8.12  8.68 4.4e-12 *** 

s(Time):NLTenthOTRUE        8.27  10.80  1.08   0.294     

s(Time,Speaker):Wordtent  217.80 376.00  2.66 < 2e-16 *** 

s(Time,Speaker):Wordtenth 254.96 367.00  3.46 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.762   Deviance explained = 77.2% 

fREML = -3302.8  Scale est. = 0.18713   n = 12839 

 

The position of the T1 sensor in the anterior-posterior position of the English speakers for 
the word ‘tenth’ can be found at the intercept of the parametric coefficients. It is clear from 
the line for LangNL that Dutch speakers differ significantly from the English speakers for 
the reference-level word ‘tent’. When focusing on the English speakers, the line starting 
with ENTenthOTRUE indicates that the English speakers show a more frontal position for 
the word ‘tenth’ than for the word ‘tent’ during the pronunciation of the whole word, and 
that this difference is significant. Similarly, the line starting with NLTenthOTRUE shows 
that there is a significant constant difference between the word ‘tenth’ and ‘tent’ for the 
Dutch speakers. (Since NLTenthO is never "TRUE" for the English speakers, it functions 
only as a contrast for the Dutch speakers.) It is useful to compare the estimates of model 
m9.ord to those of model m9. In m9, the estimate for WordLangtent.NL is about 0.36 
(higher than the reference level), whereas it is 0.79 (higher than the same reference level) 
for WordLangtenth.NL. Clearly the difference between ‘tenth’ and ‘tent’ for the Dutch 
speakers is therefore about 0.43. And this value is indeed close to the value of 0.45 shown 
by the line associated with NLTenthOTRUE in model m9.ord. Note that the computation 
does not exactly hold, as the models are not completely identical (i.e. in one model separate 
smooths for each level are included, whereas the other model includes explicit difference 
smooths). 
 Similarly to the parametric coefficients, there are now two difference smooths, one 
for the English speakers (s(Time):ENTenthOTRUE) which is highly significant, and one 
for the Dutch speakers (s(Time):NLTenthOTRUE) which is not. When dropping this non-
significant smooth and refitting the model, the constant difference between ‘tenth’ and ‘tent’ 
also does not reach significance anymore (p = 0.084; see supplementary material: model 
m9.ord2). We therefore conclude that there is not enough support for a statistically 
significant (non-linear) difference between the word ‘tent’ and the word ‘tenth’ for the 
Dutch speakers, at least not when taking the complete word pronunciation into account. To 
provide further support for this conclusion, we may also investigate this difference using a 
binary difference smooth (combining the intercept and non-linear difference). The 
specification for this model, including the creation of the two binary variables is as follows: 
 
dat$IsENTenth <- (dat$Lang == "EN" & dat$Word == "tenth")*1  
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dat$IsNLTenth <- (dat$Lang == "NL" & dat$Word == "tenth")*1  

 

m9.bin <- bam(Pos ~ Lang + s(Time, by=Lang) + 

              s(Time, by=IsENTenth) + s(Time, by=IsNLTenth, k=20)  

              + s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,   

              rho=0.912, AR.start=dat$start.event)  

 

The summary of this model shows the following:  
 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)  -0.0939     0.1189   -0.79    0.430   

LangNL        0.3635     0.1733    2.10    0.036 * 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                             edf Ref.df     F p-value     

s(Time):LangEN              4.32   5.05  2.38   0.037 *   

s(Time):LangNL              7.85   8.33 12.59 < 2e-16 *** 

s(Time):IsENTenth           8.66   9.12  8.50 5.7e-13 *** 

s(Time):IsNLTenth           9.27  11.80  1.44   0.190     

s(Time,Speaker):Wordtent  217.80 376.00  2.66 < 2e-16 *** 

s(Time,Speaker):Wordtenth 254.96 367.00  3.46 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.762   Deviance explained = 77.2% 

fREML = -3302.8  Scale est. = 0.18713   n = 12839 

 

On the basis of this model we also conclude that the English speakers clearly contrast the 
words ‘tenth’ and ‘tent’, but the Dutch speakers do not. Figure 20 visualizes the partial 
difference smooths for both the ordered factor difference model (m9.ord, top row) and the 
binary difference model (m9.bin, bottom row). It is clear that the shapes are highly similar 
to the calculated non-linear difference patterns of model m9. Furthermore, comparing the 
top graphs (associated with m9.ord) to the bottom graphs (associated with m9.bin) 
shows indeed that the ordered factor difference smooths are centered, and do not contain 
the uncertainty about the intercept difference (which is quite substantial), whereas the 
binary difference smooths are not centered and do contain the intercept uncertainty 
(resulting in wider confidence bands).  
 While this model suggests that we can now conclude that the Dutch and the English 
speakers significantly differ in how they contrast ‘tenth’ from ‘tent’, this is not the case. As 
was mentioned before (see first paragraph of Section 4.10), a difference in significance does 
not mean that the patterns can also be reliably distinguished from each other. Even though 
model comparison showed that model m9 (with the language distinction for both words) 
was preferred over model m7 (without the language distinction), this might have been 
caused only by the (substantial) difference in how both groups of speakers pronounce the 
word ‘tent’ (see the blue, dark curves in Figure 19). Fortunately, it is also possible to 
formally assess if the ‘tenth’ vs. ‘tent’ contrast significantly differs between the two groups 
of speakers.  
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Instead of modeling a binary difference smooth separately for both groups, we 
create a single binary difference smooth distinguishing ‘tenth’ from ‘tent’ without any 
condition on the language (i.e. s(Time, by=IsTenth)) and also include the binary 
difference smooth s(Time, by=IsNLTenth), which was also included in model 
m9.bin. This model is specified as follows:  
 
dat$IsTenth <- (dat$Word == "tenth")*1 

 
m9b.bin <- bam(Pos ~ Lang + s(Time, by=Lang) +    

               s(Time, by=IsTenth) + s(Time, by=IsNLTenth)  

               + s(Time,Speaker,by=Word,bs="fs",m=1),  

               data=dat, rho=0.912,  

               AR.start=dat$start.event) 

 

 
Figure 20. Visualization of the partial effects of model m9.ord (top row) and m9.bin (bottom row) 
representing the difference between ‘tenth’ and ‘tent’ for both English (left) and Dutch (right) speakers. In all 
graphs, the pointwise 95%-confidence intervals are visualized by shaded bands. 
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In this model, s(Time, by=IsNLTenth)represents the difference between the ‘tenth’-
‘tent’ contrast of the Dutch speakers versus that of the English speakers, while s(Time, 

by=IsTenth) represents the difference between the ‘tenth’-‘tent’ contrast for the English 
speakers (i.e. comparable to s(Time, by=IsENTenth) in model m9.bin). To see why 
this is the case, it is useful to see which smooths are combined to model the four conditions. 
It is helpful to first recall that s(Time, by=IsTenth) equals 0 for the word ‘tent’ and 
represents a smooth without a centering constraint for the word ‘tenth’. Similarly, 
s(Time, by=IsNLTenth) equals 0 for the word ‘tent’ pronounced by both groups and 
also when the word ‘tenth’ is pronounced by the English speaker group. When the word 
‘tenth’ is pronounced by the Dutch speaker group, s(Time, by=IsNLTenth) represents 
a smooth without a centering constraint. The smooths which have to be summed for each 
condition can therefore be listed as follows: 
  

 English ‘tent’:  s(Time):LangEN 

 English ‘tenth’: s(Time):LangEN + s(Time, by=IsTenth) 

 Dutch ‘tent’:  s(Time):LangNL 

 Dutch ‘tenth’:  s(Time):LangNL + s(Time, by=IsTenth) +  
          s(Time, by=IsNLTenth) 

 
Following the same reasoning as in Section 4.5.1, s(Time, by=IsTenth) represents the 
difference (i.e. the contrast) between ‘tenth’ and ‘tent’ for the English speakers. The contrast 
between ‘tenth’ and ‘tent’ for the Dutch speakers consists of both s(Time, by=IsTenth) 

and s(Time, by=IsNLTenth). Consequently, the difference between the Dutch and the 
English ‘tenth’-‘tent’ contrast must be represented by s(Time, by=IsNLTenth).  

The summary of m9b.bin shows that this difference does not reach significance:  
 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)  -0.0869     0.1187   -0.73    0.464   

LangNL        0.3472     0.1724    2.01    0.044 * 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                             edf Ref.df     F p-value     

s(Time):LangEN              4.80   5.58  2.98  0.0089 **  

s(Time):LangNL              7.74   8.28 12.33 < 2e-16 *** 

s(Time):IsTenth             8.93   9.30  8.58 2.4e-13 *** 

s(Time):IsNLTenth           4.29   4.77  1.65  0.1630     

s(Time,Speaker):Wordtent  217.43 376.00  2.65 < 2e-16 *** 

s(Time,Speaker):Wordtenth 256.57 367.00  3.49 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.762   Deviance explained = 77.2% 

fREML = -3303.5  Scale est. = 0.18717   n = 12839 

   
For completeness, Figure 21 shows the English difference (i.e. contrast) between ‘tenth’ and 
‘tent’ and the non-significant difference comparing the Dutch ‘tenth’-‘tent’ contrast to that of 
the English speakers. Corresponding with the binary difference model, both an ordered 
factor model and model comparison indicate that this difference is indeed not significant 
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(see supplementary material: m9b.ord, and m9a.bin.ml vs. m9b.bin.ml). 
Consequently, the reason that model m9 (including the language difference) was preferred 

over model m7 (without the language difference) is due to the difference in how both groups 
of speakers pronounce the reference word ‘tent’ (i.e. more anterior for the Dutch speakers, 
see the dark, blue lines in Figure 19). This finding also emphasizes the need for modeling 
these differences directly, rather than inadequately comparing significance values.  
 Of course, given that the minimal pair ‘tenth’-‘tent’ only differs at the end of the 
word, we might be reducing the power of our analysis by focusing on the entire time course. 
Given that we don’t observe any differences (as would be expected, considering that the 
minimal pair only differs at the end) in the first half of the word (see Figure 21, right), we 
also conducted the same analysis using only the second half of the word pronunciations (i.e. 
from normalized time 0.5 to 1.0). The supplementary material (Section 5.12) indeed shows 
that the difference between the Dutch and English speakers in how they contrast ‘tenth’ 
from ‘tent’ in the second half of the word significantly differs (p = 0.01). Dutch speakers 
exhibit a smaller distinction between ‘tenth’ and ‘tent’ than the English speakers, in line 
with our expectations. Note that while in this case there is a clear argument for limiting the 
analysis to a certain time window, we caution against limiting the time window 
(subjectively) in order to identify significant differences when there is not an a priori  
reason to do so.  

 
Figure 21. Visualization of the partial effects of model m9b.bin representing the difference between ‘tenth’ and 
‘tent’ for the English speakers (left) and how this difference needs to change to obtain the difference between 
‘tenth’ and ‘tent’ for the Dutch speakers (right). In both graphs, the pointwise 95%-confidence intervals are 
visualized by shaded bands. The pattern on the right is not significant. 

4.11 Speeding up computation 
For our present small dataset, which only includes 2 words, the most complex models take 
about 30 seconds to fit on a single core of a 36-core 2.3 GHz Intel Xeon E5-2699 v3 using 
fast restricted maximum likelihood estimation (fitting with maximum likelihood takes 
about 7 times as long). However, this dataset only contains about 10,000 rows. Especially, if 
we use larger datasets (the full dataset contains more than 100,000 rows, while Wieling et 
al., 2016 analyzed a dataset with more than a million rows), computational time will 
become rather substantial. While bam is already much faster than gam, it can be made even 
faster by taking advantage of the fact that numerical predictors often only have a modest 
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number of unique (rounded) values. Consequently, at the cost of some precision, substantial 
reductions in computation time can be achieved. To use this discretization approach, the 
bam parameter discrete has to be set to TRUE (the default is FALSE). Together with the 
discrete parameter, it is also possible to set the nthreads parameter which controls 
the number of cores used in parallel to obtain the model fit (the default value is 1). For 
example, model m9b.bin took 17.4 seconds to fit with discrete set to FALSE. When set to 

TRUE and using single core, computation time was reduced to 5.3 seconds. Using two 
processors instead of one, further reduced the computation time to 5.1 seconds. However, 
note that the speed-up using multiple processors is much more substantial when the 
models take several hours to fit rather than several seconds. The only restriction for using 
discrete, is that the model has to be fit with fast restricted maximum likelihood 
estimation and thus model comparison of models differing in the fixed effects is not possible 
(but, of course, binary smooths and ordered factors can still be used).  
 To see that the model fit with discrete set to TRUE is indeed highly similar to the 
model fit with discrete set to FALSE, the summary of m9b.bin.discrete is shown 
below and the visualization is shown in Figure 22 (for direct comparison with Figure 21).  
 
Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)   -0.085      0.119   -0.71    0.476   

LangNL         0.358      0.173    2.07    0.039 * 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Approximate significance of smooth terms: 

                             edf Ref.df     F p-value     

s(Time):LangEN              4.75   5.52  2.96  0.0084 **  

s(Time):LangNL              7.71   8.25 11.96  <2e-16 *** 

s(Time):IsTenth             8.93   9.30  9.00   1e-13 *** 

s(Time):IsNLTenth           4.32   4.81  1.68  0.1548     

s(Time,Speaker):Wordtent  217.08 376.00  2.64  <2e-16 *** 

s(Time,Speaker):Wordtenth 255.83 367.00  3.46  <2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.762   Deviance explained = 77.1% 

fREML = -3299.5  Scale est. = 0.18735   n = 12839 
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Figure 22. Visualization of the partial effects of model m9b.bin.discrete representing the difference 
between ‘tenth’ and ‘tent’ for the English speakers (left) and how this difference needs to change to obtain the 
difference between ‘tenth’ and ‘tent’ for the Dutch speakers (right). In both graphs, the pointwise 95%-
confidence intervals are visualized by shaded bands. The pattern on the right is not significant.  Note the 
negligible difference from the full precision results shown in Figure 21. 

5. Generalized additive modeling: including all words 
In Section 4, we have illustrated and explained all separate parts of an appropriate 
generalized additive modeling analysis. Now we are ready to create an appropriate model 
for all data (dataset full), including the appropriate random-effects structure and a 
correction for autocorrelation. An important distinction with respect to the previous models 
is that we now seek to generalize over all words. Consequently, Word now becomes a 
random-effect factor (i.e. a factor smooth over time), whereas the nominal variable Sound 
allows us to distinguish between /θ/-words ("TH") and /t/-words ("T"). We further need 
to take into account the location of the contrast (Loc: "Init" vs. "Final"). However, to 

keep the models discussed in this section relatively simple, we will restrict our analysis to 
words with a word-final contrast and only analyze the pattern in the second half of the 
word (cf. Section 4.10, final paragraph; dataset: fullfinal). The supplementary material 
(Sections 7 and 8) contains the analysis for both sets of words (i.e. those with a word-final 
contrast and those with a word-initial contrast) in a single model. Importantly, the 
conclusion on the basis of the full model is similar to that of the simpler model discussed 
below.   

As we are interested in assessing if Dutch speakers contrast /θ/-words from /t/-
words less strongly than English speakers, we will create a binary smooth model similar to 
m9b.bin and therefore fit the following model (the optimal value for rho was determined 
to be 0.952; see supplementary material):  
 

ffmc1 <- bam(Pos ~ Lang + s(Time, by=Lang) + s(Time, by=IsTH) +  

                  s(Time, by=IsNLTH) +  

                  s(Time,Speaker,by=Sound,bs="fs",m=1) +  

                  s(Time,Word,by=Lang,bs="fs",m=1),  

             data=fullfinal, discrete=TRUE, rho=0.952,   

             AR.start=fullfinal$start.event) 
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In this specification, IsTH is equal to 1 for /θ/-words and 0 otherwise. Similarly, IsNLTH 
is equal to 1 for /θ/-words pronounced by the Dutch speakers and 0 otherwise. It is easy to 
see that this model specification is very similar to that of m9b.bin. The only differences are 
that we (1) used IsTH and IsNLTH instead of IsTenth and IsNLTenth, (2) replaced 
by=Word with by=Sound in the by-speaker factor smooth specification, and (3) included 
an additional factor smooth for the (now) random-effect factor Word, to take into account 
the structural variability in tongue movement per word. As words may be pronounced 
differently depending on the language group the speaker belongs to, two smooths are 
modeled for each word via the by=Lang part of the by-word factor smooth specification.  

Fitting this model took about 15 seconds with discrete set to TRUE. The 
remaining autocorrelation in this model was comparable to that shown in Figure 14 (see 
supplementary material). The model summary shows the following: 
 
Parametric coefficients: 

             Estimate Std. Error t value Pr(>|t|) 

(Intercept)   -0.162      0.269   -0.60     0.55 

LangNL         0.137      0.427    0.32     0.75 

  

Approximate significance of smooth terms: 

                           edf Ref.df      F p-value     

s(Time):LangEN            3.08   3.49   2.92 0.02745 *   

s(Time):LangNL            5.26   5.70   2.53 0.01831 *   

s(Time):IsTH              5.45   5.90   4.46 0.00018 *** 

s(Time):IsNLTH            2.06   2.09   0.44 0.63448     

s(Time,Speaker):SoundT  215.18 376.00   8.33 < 2e-16 *** 

s(Time,Speaker):SoundTH 228.45 376.00  15.83 < 2e-16 *** 

s(Time,Word):LangEN      70.15  89.00  81.18 < 2e-16 *** 

s(Time,Word):LangNL      73.78  89.00 103.67 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.633   Deviance explained =   64% 

fREML = -2831.1  Scale est. = 0.6407    n = 31225 

 

Importantly, the line shown in boldface reveals that the difference between the Dutch and 
English /θ/-/t/ (word-final) contrast is not significant. In other words, the analysis does not 
allow us to reject the null hypothesis outlined in Section 2. Dutch non-native speakers 
therefore do not significantly differ from native English speakers in contrasting /θ/ and /t/ 
in articulation. Figure 23 visualizes the associated binary difference smooths, corroborating 
the model summary.  

After having fitted the final model, the only remaining issue is to conduct model 
criticism. Figure 24 shows the result of gam.check(ffmc1). As these diagnostic graphs 
are based on uncorrected residuals (i.e. ignoring the autocorrelation parameter rho), the 
scatter plots still show the spaghetti-like patterns indicative of dependencies within the 
trajectories (which have, in fact, been corrected). Unfortunately, the left graphs of Figure 24 
reveal that the residuals also show a problematic non-normal distribution, which almost 
certainly will affect the estimates and p-values of the model. Consequently, this will need to 
be addressed as we cannot trust the results of model ffmc1.    
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Figure 23. Difference smooths of model ffmc1 for the  words that have a word-final contrast. The left graph 
shows the difference between the /θ/-words and /t/-words for the English speakers. The right graph shows 
how this difference needs to change to obtain the difference between the /θ/-words and /t/-words for the Dutch 
speakers. In all graphs, the pointwise 95%-confidence intervals are visualized by shaded bands. The patterns in 
the right graph is (clearly) not significant. 

Given that the pattern of the residuals resembles that of a normal distribution with 
heavier tails, a sensible approach is to fit the model using the scaled-t family for heavy tailed 
data. To do this, only a single parameter needs to be added to the model specification of 
ffmc1: family="scat". While this change is very simple, the time needed to fit this type 
of model has increased from 15 seconds to almost 7 minutes. Using multiple processors is 
beneficial here: using 32 processors reduces the time needed to less than a minute (see the 
supplementary material for a more substantial speedup when using the full dataset: 
doubling the number of processors divides the running time on average by a factor of about 
1.7). Fortunately, the resulting model summary for model ffmc1s, shown below, is 
reasonably similar to the Gaussian model (as are the associated patterns; see 
supplementary material) and the conclusion on the basis of model ffmc1 still appears to 
hold (see line in boldface). Model criticism of the scaled-t model (shown in Figure 25) 
shows that the distribution of the residuals now nicely matches the assumed distribution. 
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Figure 24. Diagnostic plots visualizing the distribution of the residuals of model ffmc1 (normal quantile plot: 
top-left; histogram: bottom-left) and heteroscedasticity (over time: top-right; over fitted values: bottom-right). 
Note that these graphs are based on uncorrected residuals, and therefore ignore the autocorrelation parameter 
rho. 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|) 

(Intercept)   -0.197      0.267   -0.74     0.46 

LangNL         0.234      0.412    0.57     0.57 

 

Approximate significance of smooth terms: 

                           edf Ref.df     F p-value     

s(Time):LangEN            2.36   2.67  1.53   0.142     

s(Time):LangNL            4.94   5.30  2.87   0.013 *   

s(Time):IsTH              6.37   6.75  4.81 2.8e-05 *** 

s(Time):IsNLTH            3.84   4.17  0.88   0.461     

s(Time,Speaker):SoundT  239.60 376.00  2.59 < 2e-16 *** 
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s(Time,Speaker):SoundTH 233.09 376.00  3.59 < 2e-16 *** 

s(Time,Word):LangEN      75.22  88.00 17.76 < 2e-16 *** 

s(Time,Word):LangNL      78.22  88.00 27.78 < 2e-16 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.645   Deviance explained = 53.9% 

fREML =  19236  Scale est. = 1         n = 31225 

 

 
Figure 25. Diagnostic plots visualizing the distribution of the residuals of the scaled-t model ffmc1s (normal 
quantile plot: top-left; histogram: bottom-left) and heteroscedasticity (over time: top-right; over fitted values: 
bottom-right). Note that these graphs are based on uncorrected residuals, and therefore ignore the 
autocorrelation parameter rho. 

6 Discussion 
In this tutorial, we have explained the use of generalized additive (mixed-effects) modeling 
by analyzing an articulatory dataset contrasting the pronunciation of L1 and L2 speakers of 
English. With respect to our research question, we have shown that while native English 
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speakers seem to more clearly distinguish /θ/ from /t/, there is insufficient evidence (at 
least when analyzing a single sensor in a single dimension) to conclude that the distinction 
made by non-native Dutch (highly educated) speakers is different from that of native 
English speakers. By using generalized additive modeling, we were able to analyze all 
dynamic data, and did not have to average over time or select a specific time point. The 
analysis allowed us to assess how the specific non-linear tongue movement patterns varied 
depending on the speaker group, while simultaneously taking all dependencies in our data 
into account. Wieling et al. (2017) evaluated the acoustic recordings underlying this dataset 
and showed that while for Dutch speakers (as opposed to English speakers) /θ/-words (e.g., 
‘tenth’) were significantly more often recognized (by a native Dutch listener) as /t/-words 
(e.g., ‘tent’), almost 70% was still correctly recognized (compared to 88% for the native 
English speakers). An automatic (British English) speech recognition system confirmed this 
pattern of results. Consequently, with respect to prominent speech learning models (Best, 
1995; Flege, 1995), Dutch speakers, at least when highly educated, do not appear to have 
completely merged the two sounds.  

With respect to the actual modeling, we have used the R package mgcv (Wood 2011; 
Wood, 2017) for model fitting, and the R package itsadug (van Rij et al., 2017) for 
visualizing most of the resulting patterns. We have shown how potentially non-linear 
patterns may be modeled by smooths, and that the pre-specified basis dimension limits the 
maximum complexity of the smooths. We have further discussed how an informed choice 
can be made about how to select the best model given the data. Three approaches were 
illustrated: model comparison, using ordered factor difference smooths, and using binary 
difference smooths. Model comparison involves fitting two models and requires extensive 
computation due to the necessity of fitting using maximum likelihood estimation. By 
contrast, the latter two approaches are more efficient, as they evaluate whether the 
additional complexity (i.e. the distinction between two groups or categories) is necessary by 
directly modeling a difference smooth. The binary difference smooth model evaluates 
whether the combined constant and non-linear difference between the two categories is 
necessary, whereas the ordered factor difference smooth model separately assesses the 
necessity of including the constant and non-linear difference.  

We would also like to emphasize that comparing the significance of two smooths 
does not allow any conclusion about these patterns being significantly different or not. 
Furthermore, while it is essential to visualize the (differences between) smooths in order to 
interpret the results, deciding if a more complex model is warranted should also consist of a 
more formal assessment (i.e. using one of the three approaches listed above). For example, 
while the visualization of the binary difference smooth in Figure 21 (right) might suggest a 
significant difference, this was not supported by any of the more formal approaches.  

We have also observed how the dependency in subjects and items may be modeled 
by including random intercepts, random (linear) slopes, and, most importantly, factor 
smooths which are able to model non-linear random effects. In addition, we discussed how 
another type of dependency, autocorrelation, may be alleviated via the rho parameter of 
the mgcv function bam. Besides modeling one-dimensional patterns, we have modeled two-
dimensional patterns using a tensor product (see Wieling et al., 2014 for a tensor product 
involving more than two numerical variables), and we have decomposed the tensor product 
into separate smooths for each variable, as well as a separate tensor product interaction. 
Finally, we have discussed aspects of model criticism and illustrated an example of fitting a 
non-Gaussian scaled-t model. Especially here, discretization and parallelization were 
important in reducing computation time to a manageable duration.  

While the generalized additive modeling approach is certainly powerful and flexible, 
it is not perfect. At present, no correlation structure can be incorporated in the linear 
random effects structure, at least not when using the function gam or bam. Consequently, if 
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the patterns in the data are linear, or can be adequately represented by simple polynomials, 
it might be preferable to use growth curve analysis (Mirman et al., 2008; Mirman, 2014) or 
linear mixed-effects regression modeling via the R lme4 package (see also Winter & Wieling, 
2016 for a discussion of both techniques). Furthermore, if heteroscedasticity and 
dependencies in the data (e.g., autocorrelation) cannot be adequately coped with, it may be 
useful to investigate whether sparse functional linear mixed modeling (Cederbaum et al., 
2016; Pouplier et al., 2017) is a more suitable analysis approach. Unfortunately, sparse 
functional linear mixed modeling does not allow for the inclusion of random slopes, which 
are almost always necessary.   

 
7 Conclusion 
By providing a hands-on approach, together with the original data and all R commands, 
readers should be able to replicate the analyses and gain more understanding about the 
material at hand. Importantly, other studies employing generalized additive modeling by 
Wieling and others have also made their data and code available (e.g., Meulman et al., 2015; 
Sóskuthy, 2017; Winter & Wieling, 2016; Wieling et al., 2011, 2014, 2016, 2017), thereby 
helping other researchers become familiar with this powerful analysis tool. 
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