
1

Analyzing dynamic phonetic data using generalized additive mixed modeling: a
tutorial focusing on articulatory differences between L1 and L2 speakers of English

Martijn Wieling

University of Groningen, Haskins Laboratories
m.b.wieling@rug.nl

Abstract
In phonetics, many datasets are encountered which deal with dynamic data collected over
time. Examples include diphthongal formant trajectories and articulator trajectories
observed using electromagnetic articulography. Traditional approaches for analyzing this
type of data generally aggregate data over a certain timespan, or only include
measurements at a fixed time point (e.g., formant measurements at the midpoint of a
vowel). In this paper, I discuss generalized additive modeling, a non-linear regression
method which does not require aggregation or the pre-selection of a fixed time point.
Instead, the method is able to identify general patterns over dynamically varying data, while
simultaneously accounting for subject and item-related variability. An advantage of this
approach is that patterns may be discovered which are hidden when data is aggregated or
when a single time point is selected. A corresponding disadvantage is that these analyses
are generally more time consuming and complex. This tutorial aims to overcome this
disadvantage by providing a hands-on introduction to generalized additive modeling using
articulatory trajectories from L1 and L2 speakers of English within the freely available R
environment. All data and R code is made available to reproduce the analysis presented in
this paper.

1. Introduction
In phonetics, many types of data are collected, and frequently these types of data involve
some kind of dynamic data collected over time. For example, in Volume 65 of Journal of
Phonetics, seven out of nine papers focused on dynamic data. Most papers investigated
vowel formant measurements in speech production (Hay et al., 2017; Hualde et al., 2017;
Hübscher et al., 2017; Ots, 2017; Rao et al., 2017; Yang & Fox, 2017). The authors of these
papers either analyzed formant measurements at pre-selected time points (Yang & Fox,
2017; Hualde et al., 2017), average formant measurements (Hay et al., 2017; Hübscher et al.,
2017), or simplified descriptions of formant contours (Ots, 2017; Rao et al., 2017). Another
type of dynamic data, articulatory measurements (analyzed at the vowel midpoint), was
analyzed by Pastätter & Pouplier (2017).
 As the aforementioned studies illustrate, dynamic data is frequently simplified in
one way or another before being analyzed. The advantage of simplification is clear. It not
only reduces the data to a more manageable size, but it also allows the researcher to use
well-known and well-established statistical approaches for analyzing the data, such as
analysis of variance or linear mixed-effects regression modeling. But there is also a
disadvantage associated with simplification: potentially interesting patterns in the dynamic
data may be left undiscovered. For example, Van der Harst et al. (2014) showed that
analyzing dynamic formant trajectories revealed relevant (sociolinguistic) information,
which was not apparent when analyzing a single time point.
 When the full range of dynamic data is the subject of analysis, more sophisticated
statistical techniques need to be employed, particularly those which are able to identify
non-linear patterns. For example, one can use growth curve analysis (Mirman et al., 2008;
Mirman, 2014; see Winter & Wieling, 2016 for a tutorial introduction) which requires the
researcher to provide the specification of the non-linear pattern a priori. Another popular
approach is to use (a variant of) functional data analysis (e.g., Ramsay & Silverman, 2005;

2

Gubian et al., 2015) or sparse functional linear mixed modeling (Cederbaum et al., 2016;
Pouplier et al., 2017)1 where functional principal components analysis can be used to
characterize different types of non-linear patterns. In this paper, however, we will focus on
generalized additive models (GAMs; Hastie & Tibshirani, 1990; Wood, 2006; Wood, 2017).
In generalized additive modeling, the non-linear relationship between one or more
predictors and the dependent variable is determined automatically as a function of the
algorithm. While this type of analysis is not new, analyzing dynamic data in linguistics
(potentially involving millions of data points) has been – until recently – computationally
prohibitive. Nevertheless, various studies have recently been conducted which illustrate the
potential of generalized additive modeling in linguistics and phonetics.
 Meulman et al. (2015) showed how to analyze EEG trajectories over time while
simultaneously assessing the continuous influence of (second language learners’) age of
acquisition in a dataset of over 1.6 million observations. Importantly, they compared their
analysis using GAMs to a more traditional analysis of variance analysis, and showed that the
latter analysis was less sensitive and would have missed important results. Another
example is provided by Nixon et al. (2016), who illustrated how visual world (i.e. eye
tracking) data could suitably be analyzed with GAMs in a study on Cantonese tone
perception. Finally, Wieling et al. (2016) used GAMs to compare articulatory trajectories
between two groups of Dutch dialect speakers.
 While the second edition of the book Generalized Additive Models: an introduction
with R (Wood, 2017) provides an excellent discussion and introduction to GAMs, it assumes
a reasonably high level of technical sophistication. The main aim of the present study is to
illustrate and explain the use of generalized additive modeling in a more accessible way,
such that it may be used by linguists to analyze their own (dynamic) data. In this tutorial,
we will analyze a dataset of articulatory trajectories comparing native speakers of English
to Dutch speakers of English as a second language (L2). We will systematically increase the
sophistication of our analysis by starting from a simple generalized additive model and
extending it step-by-step. While the step-by-step analysis is not an approach someone
would normally use (i.e. one would normally start with the model reflecting the
hypothesis), we use this approach here to incrementally explain all necessary concepts with
respect to generalized additive modeling.

There are already a few existing tutorials on GAMs. Sóskuthy (2017) provides an
excellent tutorial introduction to GAMs, where he shows how to analyze formant
trajectories over time using real-world data from Stuart-Smith et al. (2015). In addition,
Winter and Wieling (2016) take a hands-on approach to discuss various statistical
approaches, including mixed-effects regression, growth curve analysis and generalized
additive modeling, to model linguistic change. The present paper differs from Winter and
Wieling (2016) by not providing a comparison between different analysis approaches, but

1 The sparse functional linear mixed modeling approach of Cederbaum et al. (2016) and Pouplier et
al. (2017) has some overlap with generalized additive modeling, as it also uses the function bam from
the mgcv R package. Nevertheless, there are also distinct differences between the two approaches. An
important advantage of the sparse functional linear mixed modeling approach is that it allows the
error to be heteroscedastic (i.e. the error variance is allowed to vary depending on the value of the
predictor or dependent variable), which is problematic for generalized additive models (but see
Section 4.6 for a potential solution). An important disadvantage of sparse functional linear mixed
modeling, however, is that random slopes cannot be included (yet). Consequently, when there is
subject-specific variability in the effect of a predictor, the associated confidence bands will be too
thin (i.e. p-values will be too low; see Section 4.7). In addition, model comparison of two different
sparse functional linear mixed models fitted to the same data is not possible. In sum, both methods
have their own strengths and weaknesses, and it will depend on the characteristics of the data and
the model which approach is preferred.

3

instead providing a more comprehensive overview of generalized additive modeling (e.g.,
including non-linear interactions, model criticism, etc.). Compared to Sóskuthy (2017), the
present paper provides less detail about GAM theory, but places more emphasis on
evaluating whether model assumptions are satisfied. In addition, Sóskuthy provides an
analysis of an acoustic dataset of about 5,000 observations, whereas the present paper
shows how to apply GAMs to a much larger (articulatory) dataset containing over 100,000
observations. Finally, this tutorial also illustrates how to fit a non-Gaussian GAM, which
neither of the two other tutorials show.

In the following two sections, we will discuss the research question and the data
collection procedure. In Sections 4 and 5, we will illustrate and explain the details of the
model specification (in the statistical software package R; R Core Team, 2017), and also
explain important concepts necessary to understand the analysis.2 Finally, Sections 6 and 7
provide a discussion of the advantages and disadvantages of generalized additive modeling
and a conclusion.

2. Research project description and research question
In this research project, our goal was to compare the pronunciation of native English
speakers to non-native (Dutch) speakers of English. Speech learning models, such as Flege’s
Speech Learning Model (SLM; Flege, 1995) or Best’s Perceptual Assimilation Model (PAM;
Best, 1995), explain L2 pronunciation difficulties by considering the phonetic similarity of
the speaker’s L1 and L2. Sound segments in the L2 that are very similar to those in the L1
(and map to the same category) are predicted to be harder to learn than those which are not
(as these map to a new sound category). In this tutorial we focus on data collected for Dutch
L2 speakers of English when they pronounce the sound /θ/ (which does not occur in the
native Dutch consonant inventory, but is very similar to the Dutch sounds /t/ or /d/), and
compare their pronunciations to those of native Standard Southern British English
speakers. Based on earlier acoustic analyses of different data (Hanulika & Weber, 2012;
Westers et al., 2007), Dutch speakers were shown to frequently substitute /θ/ with /t/. This
finding is in line with predictions of the SLM and PAM, and is used to guide our hypothesis.

Instead of focusing on perceptual or acoustic differences, here we will focus on the
underlying articulatory trajectories. There are only a small number of studies which have
investigated L2 differences in pronunciation from an articulatory perspective. One of the
few studies was conducted by Nissen et al. (2007) who investigated differences between the
L2 English pronunciation of native Korean and native Spanish speakers. However, in
contrast to our study, they did not include a native speaker group.

In the present study, we will investigate the movement of the tongue tip during the
pronunciation of words (minimal pairs) containing either /t/ or /θ/. Consequently, the
research question of our study is as follows:

Do Dutch non-native speakers of English differ from native English speakers
contrasting the dental fricative /θ/ from the alveolar plosive /t/ in articulation?

Our associated null-hypothesis is that the two groups will show the same contrast between
/t/ and /θ/, and the alternative hypothesis – on the basis of the SLM and PAM – is that the
Dutch speakers will show a smaller contrast between the two sounds, as they will more
often merge the two sounds.

2 This analysis is loosely based on several course lectures about generalized additive models. The
slides of these lectures are available at: http://www.let.rug.nl/wieling/Statistics.

http://www.let.rug.nl/wieling/Statistics

4

3. Data collection procedure
The Dutch L2 data was collected at the University of Groningen (20 university students),
and the English L1 data was collected at the University College London (22 university
students). Before conducting the experiment, ethical approval was obtained at the
respective universities. Before the experiment, participants were informed about the nature
and goal of the experiment and signed an informed consent form. Participants were
reimbursed either via course credit (Groningen) or payment (London) for their
participation, which generally took about 90 minutes.

We collected data for 10 minimal pairs of English words for all speakers (i.e. ‘tent’-
‘tenth’, ‘fate’-‘faith’, ‘fort’-‘forth’, ‘kit’-‘kith’, ‘mitt’-‘myth’, ‘tank’-‘thank’, ‘team’-‘theme’, ‘tick’-
‘thick’, ‘ties’-‘thighs’, and ‘tongs’-‘thongs’). Each word was pronounced individually, but
preceded and succeeded by the pronunciation of /ə/ in order to ensure a neutral
articulatory context. In order to achieve this, the participants were shown stimuli consisting
of a single word surrounded by two schwas (e.g., “ə thank ə”). The order of the words was
randomized and every word was pronounced twice during the course of the experiment.
While the speakers were pronouncing these words, we tracked the movement of sensors
placed on their tongue and lips using a 16-channel Wave electromagnetic articulography
(EMA) device (Northern Digital Inc.) at a sampling rate of 100 Hz. Sensors were glued to the
tongue and lips with PeriAcryl 90HV dental glue. Concurrently recorded acoustic data
(collected using an Audio-Technica AT875R microphone) was automatically synchronized
with the articulatory data. In post-processing, articulatory data were corrected for head
movement using four reference sensors (left and right mastoid processes, forehead, upper
incisor), and aligned to each speaker's occlusal plane based on a biteplane trial (see Wieling
et al., 2016).

In this tutorial, we only focus on the anterior-posterior position of the T1 sensor
(positioned about 0.5-1 cm behind the tongue tip), as articulatory differences between /t/
and /θ/ should be most clearly apparent on this trajectory and dimension. The individual
words were subsequently segmented on the basis of the articulatory gestures (i.e. from the
gestural onset of the initial sound to the gestural offset of the final sound; using mview;
Tiede, 2005) and time-normalized between 0 (gestural start of the word) to 1 (gestural end
of the word). Furthermore, the T1 sensor positions were normalized for each speaker by z-
transforming the positions per speaker (i.e. subtracting the mean and dividing by the
standard deviation; the mean and standard deviation per speaker were obtained on the
basis of all (~250) utterances elicited in the context of the broader experiment in which the
present data was collected). Higher values signify more anterior positions, whereas lower
values indicate more posterior positions. As generalized additive modeling essentially
smooths the data, filtering is not necessary. In fact, it is even beneficial to analyze raw
instead of filtered data, as this will result in less autocorrelation in the residuals (i.e. the
difference between the fitted values and the actual values; see Section 4.8 for an
explanation). Consequently, we analyze the raw, unfiltered data in this paper.

Note that due to the fixed sampling rate (of 100 Hz) the number of sampling points
per word is dependent on the word’s length. Our present dataset consists of 126,177
measurement points collected across 1618 trials (62 trials were missing due to sensor
failure or synchronization issues). The average duration of each word (from the articulatory
start to the articulatory end) is therefore about 0.78 seconds, yielding on average 78
measurement points per word production.

4. Generalized additive modeling: step-by-step analysis
A generalized additive model can be seen as a regression model which is able to model non-
linear patterns. Rather than explaining the basic concepts underlying generalized additive
modeling at the start, in this tutorial we will explain the concepts when we first need them

5

in the analysis. Importantly, this tutorial will not focus on the underlying mathematics, but
rather take a more hands-on approach. For a more mathematical background, we refer the
reader to the excellent, recently revised book of Simon Wood on generalized additive
modeling (Wood, 2017).

To create a generalized additive model, we will use the mgcv package in R (version
1.8-23; Wood, 2011; Wood, 2017). Furthermore, for convenient plotting functions, we will
use the itsadug R package (version 2.3.0; van Rij et al, 2017). Both can be loaded via the
library command (e.g., library(mgcv)). (Note that R commands as well as the output
will be explicitly marked by using a monospace font.)

Instead of starting immediately with a suitable model for our data, we will start with
a simple model and make the model gradually more complex, eventually arriving at the
model appropriate for our data. Particularly, we will first discuss models which do not
include any random effects, even though this is clearly inappropriate (given that speakers
pronounce multiple words). Consequently, please keep in mind that the p-values and
confidence bands will be overconfident for these first few models (e.g., Judd et al., 2012).

Of course, over time the function calls or function parameters may become
outdated, while this tutorial text, once published, will remain fixed. Therefore, we will
endeavor to keep the associated paper package up-to-date. The paper package is available
at the author’s personal website, http://www.martijnwieling.nl, and includes all data, code,
and output (direct link: http://www.let.rug.nl/wieling/Tutorial).

4.1 The dataset
Our dataset, dat, has the following structure (only the first six out of 126,117 lines are

shown using the command head(dat)):

 Speaker Lang Word Sound Loc Trial Time Pos

1 VENI_EN_1 EN tick T Init 1 0.0000 -0.392

2 VENI_EN_1 EN tick T Init 1 0.0161 -0.440

3 VENI_EN_1 EN tick T Init 1 0.0323 -0.440

4 VENI_EN_1 EN tick T Init 1 0.0484 -0.503

5 VENI_EN_1 EN tick T Init 1 0.0645 -0.513

6 VENI_EN_1 EN tick T Init 1 0.0806 -0.677

The first column (i.e. variable), Speaker, shows the speaker ID, whereas the second
column, Lang, shows the native language of the speaker (EN for native English speakers, or
NL for native Dutch speakers). The third column, Word, shows the item label. Column four,
Sound, contains either T or TH for minimal pairs involving the /t/ or the /θ/, respectively.
Column five, Loc, contains either the value Init or the value Final, indicating where in
the word the sound /t/ or /θ/ occurs (e.g., for the words ‘tent’ and ‘tenth’ this is at the end
of the word). The sixth column, Trial, contains the trial number during which the word
was pronounced by the speaker. The final two columns, Time and Pos, contain the
normalized time point (between 0 and 1) and the associated (standardized) anterior
position of the T1 sensor.

4.2 A first (linear) model
For simplicity, we will illustrate the generalized additive modeling approach by focusing
only on the minimal pair ‘tent’-‘tenth’. We will use this example to illustrate all necessary
concepts, but we will later extend our analysis to all words in Section 5.

The first model we construct is:

m1 <- bam(Pos ~ Word, data=dat, method="fREML")

6

This model simply estimates the average (constant) anterior position difference (of the T1
sensor) between the two words (‘tent’ and ‘tenth’), and is shown to illustrate the general
model specification. We use the function bam to fit a generalized additive model. (The
alternative function gam becomes prohibitively slow for complex models which are fit to
datasets exceeding 10,000 data points.) The first parameter of the function is the formula
reflecting the model specification, in this case: Pos ~ Word. The first variable of the
formula, Pos, is the dependent variable (the anterior position of the T1 sensor). The
dependent variable is followed by the tilde (~), after which one or more independent

variables are added. In this case, the inclusion of a single predictor, Word, allows the model
to estimate a constant difference between its two levels (‘tenth’ versus ‘tent’; the latter
word has been set as the reference level of the predictor). The parameter data is set to the
name of the data frame variable in which the values of the dependent and independent
variables are stored (in this case: dat). The third parameter (method) specifies the
smoothing parameter estimation method, which is currently set to the default of "fREML",
fast restricted maximum likelihood estimation. This is the one of the fastest fitting methods,
but it is important to keep in mind that models fit with (f)REML cannot be compared when
the models differ in their fixed effects (i.e. the predictors in which we are generally
interested; see Section 4.7 for more details). In that case, method should be set to "ML"
(maximum likelihood estimation), which is much slower. To obtain a summary of the model
we can use the following command in R:

(smry1 <- summary(m1))

Note that it is generally good practice to store the summary in a variable, since the summary
of a complex model might take a while to compute. The summary (which is printed since the
full command is put between parentheses) shows the following:

Family: gaussian

Link function: identity

Formula:

Pos ~ Word

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0654 0.0117 5.57 2.5e-08 ***

Wordtenth 0.6642 0.0164 40.41 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.113 Deviance explained = 11.3%

-REML = 17307 Scale est. = 0.86694 n = 12839

The top lines show that we use a Gaussian model with an identity link function (i.e. we use
the original, non-transformed, dependent variable), together with the model formula. The
next block shows the parametric coefficients. As usual in regression, the intercept is the
value of the dependent variable when all numerical predictors are equal to 0 and nominal
variables are at their reference level. Since the reference level for the nominal variable
Word is ‘tent’, this means the average anterior position of the T1 sensor for the word ‘tent’
for all speakers is about 0.07. The line associated with Wordtenth (the non-reference

7

level, i.e. tenth, is appended to the variable name) indicates that the anterior position of
the T1 sensor for the word ‘tenth’ is about 0.66 higher (more anterior) than for the word
‘tent’, and that this difference is significant with a very small p-value (at least, according to
this analysis, which does not yet take the random-effects structure into account).

The final two lines of the summary show the goodness-of-fit statistics. The adjusted
r2 represents the amount of variance explained by the regression (corrected to use unbiased
estimators; see Wood, 2006: 29). The deviance explained is a generalization of r2 and will be
very similar to the actual r2 value for Gaussian models (Wood, 2006: 84). The REML
(restricted maximum likelihood) value by itself is not informative. The value is only
meaningful when two models are compared which are fit to the same data, but only differ in
their random effects. In that case lower values are associated with a model which is a better
fit to the data. The minus sign (-REML) is added as the REML value is mostly negative. (Note
that for later models, i.e. those including non-linear patterns, the -REML label is replaced by
fREML.) The scale (parameter) estimate represents the variance of the residuals. Finally,
the number of data points which are included in the model are shown (in this case: 12,839).

4.3 Modeling non-linear patterns
Of course, we are not only interested in a constant T1 anterior position difference between
the two words, but also in the anterior position of the T1 sensor over time. A generalized
additive model allows us to assess if there are non-linear patterns in our data by using so-
called smooths. These smooths model non-linear patterns by combining a pre-specified
number of basis functions. For example, a cubic regression spline smooth constructs a non-
linear pattern by joining several cubic polynomials (see also Sóskuthy, 2017). The default
type of smooth, which we will use in this tutorial, is the thin plate regression spline. The
thin plate regression spline is a computationally efficient approximation of the optimal thin
plate spline (Wood, 2003). The thin plate regression spline models a non-linear pattern by
combining increasingly complex non-linear basis functions (see Figure 1). Each basis
function is first multiplied by a coefficient (i.e. the magnitude of the contribution of that
basis function) and then all resulting patterns are summed to yield the final (potentially)
non-linear pattern. Note that the first basis function is not incorporated in the actual
smooth, but is included in the model’s intercept. While modeling non-linear patterns may
seem to be an approach which is bound to lead to overfitting, GAMs apply a penalization to
non-linearity (i.e. ‘wigglyness’) to prevent this. Rather than minimizing the error only (i.e.
the difference between the fitted values and the actual values), GAMs minimize a
combination between the error and a non-linearity penalty thereby preventing overfitting
and minimizing prediction error. Consequently, a generalized additive model will only
identify a non-linear effect if there is substantial support for such a pattern in the data, but
will instead detect a linear effect if there is only support for a linear pattern. With respect to
the thin plate regression spline basis functions visualized in Figure 1, especially the more
complex non-linear patterns will generally be more heavily penalized (i.e. have coefficients
closer to zero).

To extend m1 by including a non-linear pattern over time for both groups
separately, the following generalized additive model can be specified (we exclude the
method parameter as it is set to the default value of "fREML"):

m2 <- bam(Pos ~ Word + s(Time, by=Word, bs="tp", k=10), data=dat)

8

Figure 1. Example of the first ten basis functions of a thin plate regression spline. The first basis function is not
part of the smooth, but is included in the model’s intercept.

The text in boldface shows the additional term compared to model m1. The function s sets
up a smooth over the first parameter (Time), separately for each level of the nominal
variable indicated by the by-parameter (i.e. Word). The bs-parameter specifies the type of

smooth, and in this case is set to "tp", the default thin plate regression spline (a cubic
regression spline can be fit instead by setting bs to the value "cr"). The k-parameter,

finally, sets the size of the basis dimension. In the example above, by setting k to 10 (the
default value), there are at most 9 (k – 1) basis functions used in each smooth (see Figure
1). Since the smooth type and the basis dimension are both set to their default, a simpler
specification of the smooth is s(Time, by=Word). If the by-parameter were left out, the
model would fit only a single non-linear pattern, and not a separate pattern per word.
 The summary of model m2 shows the following (starting from the parametric
coefficients):

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0655 0.0107 6.14 8.3e-10 ***

Wordtenth 0.6624 0.0149 44.34 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):Wordtent 7.52 8.46 28.4 <2e-16 ***

s(Time):Wordtenth 8.55 8.94 276.2 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.267 Deviance explained = 26.8%

fREML = 16112 Scale est. = 0.71584 n = 12839

In addition to the parametric coefficients, now an additional block is added consisting of the
approximate significance of smooth terms. Here two lines are visible,
s(Time):Wordtent, representing the smooth for the Word ‘tent’ and

9

s(Time):Wordtenth, reflecting the smooth for the Word ‘tenth’. The p-value associated
with each smooth indicates if the smooth is significantly different from 0 (which both are in
this, still suboptimal, analysis). The Ref.df value is the reference number of degrees of
freedom used for hypothesis testing (on the basis of the associated F-value). The edf value
reflects the number of effective degrees of freedom, which can be seen as an estimate of
how many parameters are needed to represent the smooth. (Due to penalization, both edf
and Ref.df are almost always non-integer.) The edf value is indicative of the amount of
non-linearity of the smooth. If the edf value for a certain smooth is (close to) 1, this means
that the pattern is (close to) linear (i.e. cf. the second basis function in Figure 1). A value
greater than 1 indicates that the pattern is more complex (i.e. non-linear). The edf value is
limited by k minus one (as the intercept is part of the parametric coefficients). Due to

penalization, the edf value will generally be lower than its maximum value. If the edf value
is close to its maximum (which is the case for m2, particularly for the ‘tenth’ smooth), then
this suggests that a higher basis dimension might be necessary to prevent oversmoothing
(i.e. oversimplifying the non-linear pattern). To more formally assess this, we can use the
function gam.check with as input model m2: gam.check(m2). The output of this call is:

Method: fREML Optimizer: perf newton

full convergence after 9 iterations.

Gradient range [-4.61e-07,3.86e-07]

(score 16112 & scale 0.716).

Hessian positive definite, eigenvalue range [2.95,6418].

Model rank = 20 / 20

Basis dimension (k) checking results. Low p-value (k-index<1) may

indicate that k is too low, especially if edf is close to k'.

 k' edf k-index p-value

s(Time):Wordtent 9.00 7.52 1 0.47

s(Time):Wordtenth 9.00 8.55 1 0.49

The first lines show that the model converged on a solution. The bottom lines are associated
with the smooths. It shows the edf values together with k' (i.e. k - 1). If the value of k-

index is lower than 1 and the associated p-value is low, this suggests that the basis
dimension has been restricted too much. In that case, it is good practice to refit the model
with the value of k doubled. In this case, there is no reason to do so, as the value of k-

index is not smaller than 1 and the p-value is relatively high.
In principle, the k-parameter can be set as high as the number of unique values in

the data, as penalization will result in the appropriate shape. However, allowing for more
complexity negatively impacts computation time.

4.4 Visualizing GAMs
While it is possible to summarize a linear pattern in only a single line, this is obviously not
possible for a non-linear pattern. Correspondingly, visualization is essential to interpret the
non-linear patterns. The command: plot(m2) yields the visualizations shown in Figure 2
(abline(h=0) was used to add the horizontal line for the x-axis in both visualizations).

10

Figure 2. Visualization of the non-linear smooths (partial effects) for the word ‘tent’ (left) and the word ‘tenth’
(right) of model m2. The pointwise 95%-confidence intervals are shown by the dashed lines. Note that the range
of the y-axis, showing the anterior position of the T1 sensor, has been set to [-1,2] to be comparable with the
other plots in this paper.

It is important to realize that this plotting function only visualizes the two non-linear
patterns without taking into account anything else in the model. This means that only the
partial effects are visualized. It is also good to keep in mind that the smooths themselves are
centered (i.e. move around the x-axis, y = 0). Visualizing the smooths in this way, i.e. as a
partial effect, is insightful to identify the non-linear patterns, but it does not give any
information about the relative height of the smooths. For this we need to take into account
the full model (i.e. the fitted values). Particularly, the intercept and the constant difference
between the two smooths shown in the parametric part of the model need to be taken into
account. For this type of visualization, we use the function plot_smooth from the itsadug
package as follows:

plot_smooth(m2, view="Time", plot_all="Word", rug=FALSE)

The first parameter is the name of the stored model. The parameter view is set to the name
of the variable visualized on the x-axis. The parameter plot_all should be set to the name
of the nominal variable if smooths need to be displayed for all levels of this variable. This is
generally equal to the name of the variable set using the by-parameter in the smooth
specification. If the parameter is excluded, it only shows a graph for a single level (a
notification will report which level is shown in case there are multiple levels). The final
parameter rug is used to show or suppress small vertical lines on the x-axis for all
individual data points. Since there are many unique values, we suppress these vertical lines
here by setting the value of the parameter to FALSE. Figure 3 shows the result of this call
and visualizes both patterns in a single graph. It is clear that the smooths are not centered
(i.e. they represent full effects, rather than partial effects), and that the ‘tenth’-curve is
above the ‘tent’-curve, reflecting that the /θ/ is pronounced with more anterior T1 position
than the /t/. The shapes of the curves are, as would be expected, identical to the partial
effects shown in Figure 2.

To visualize the difference, we can use the itsadug function plot_diff as follows:

plot_diff(m2, view="Time", comp=list(Word=c("tenth","tent")))

11

The parameters are similar to those of the plot_smooth function, with the addition of the
comp parameter which requires a list of one or more variables together with two levels
which should be compared. In this case, the first word (i.e. ‘tenth’) is contrasted with the
second word (i.e. ‘tent’) in the plot. Figure 4 shows this difference.

Figure 3. Non-linear smooths (fitted values) for the word ‘tent’ (blue, dark) and the word ‘tenth’ (red, light) of
model m2. The pointwise 95%-confidence intervals are shown by shaded bands.

Figure 4. Difference between the two (non-linear) smooths comparing the word ‘tenth’ to the word ‘tent’ of
model m2. The pointwise 95%-confidence interval is shown by a shaded band. When the shaded confidence
band does not overlap with the x-axis (i.e. the value is significantly different from zero), this is indicated by a red
line on the x-axis (and vertical dotted lines).

4.5 Is the additional complexity necessary?
While it may be obvious from Figures 3 and 4 that the two patterns need to be
distinguished, it is necessary to assess this statistically. There are three approaches for this,
each with its own merits.

12

4.5.1 Model comparison
The first approach is to fit two models, one model without the distinction and one with the
distinction, and compare the two models, for example using the Akaike Information
Criterion (AIC; Akaike, 1974) measuring the goodness of fit of the two models while taking
into account the complexity of the models. In this paper we use a minimum reduction
threshold of 2 AIC units to select a more complex model (cf. Wieling et al., 2014). The
itsadug function compareML can be used to compare (the AIC of) two models. As
mentioned before, models differing in their fixed effects can only be compared when fit with
the maximum likelihood (ML) estimation method. Consequently, we refit m2 using ML
(naming this model m2b.ml) and we fit a simpler model (m2a.ml) which includes the
constant difference between the two words, but only a single smooth. As such, model
m2a.ml assumes that the pattern over time is the same for both words. Both models
include Word as a predictor, as it was found to be highly significant in m1.

m2a.ml <- bam(Pos ~ Word + s(Time), data=dat, method="ML")

m2b.ml <- bam(Pos ~ Word + s(Time, by=Word), data=dat,

 method="ML")

Note that the k-parameter and the bs-parameter were not explicitly specified, as these
parameters were set to their default values. We can now compare the two models using:

compareML(m2a.ml,m2b.ml)

This results in the following output:

m2a.ml: Pos ~ Word + s(Time)

m2b.ml: Pos ~ Word + s(Time, by = Word)

Chi-square test of ML scores

 Model Score Edf Difference Df p.value Sig.

1 m2a.ml 16505 4

2 m2b.ml 16103 6 401.805 2.000 < 2e-16 ***

AIC difference: 823.83, model m2b.ml has lower AIC.

These results show that model m2b.ml is preferred as both its AIC score is much lower and
the ML score is significantly lower when taking the number of parameters into account.
Note that in the model comparison procedure, each smooth counts as two degrees of
freedom (a random and a fixed part), and not the difference in number of effective degrees
of freedom shown in the model summary.
 While the model comparison approach is straightforward, it has one clear drawback.
To compare models differing in their fixed effects, the models need to be fit with maximum
likelihood estimation. This method is substantially slower than fitting with restricted
maximum likelihood estimation. Especially with more complex models which also include a
rich random-effects structure, this may become prohibitive.

4.5.2 Refitting the model with a binary difference smooth
Another approach to identify whether a group distinction is necessary, is to change the
specification of our model in such a way that we include a smooth modeling the difference

13

between the two original smooths. Subsequently, if this difference smooth is found to be
significant, this immediately indicates that the additional complexity of distinguishing two
groups is required. To fit this new model, we first have to create a new, binary (i.e. dummy),
variable which is equal to 0 for one level of the nominal variable and 1 for the other level.
(Note that if there are more than two levels, multiple dummy variables can be used.) We
now create a variable, IsTenth, which is 1 for the word ‘tenth’ and 0 for the word ‘tent’:

dat$IsTenth <- (dat$Word == "tenth")*1

(In this tutorial, binary predictors can be identified by their variable names starting with
Is.) We now use this variable in the new model specification. In the specification of m2 each
smooth modeled the pattern associated with its own level. In the new specification,
however, there is one smooth representing the reference level, and one smooth
representing the difference between the reference level and the other level:

m2.bin <- bam(Pos ~ s(Time) + s(Time, by=IsTenth), data=dat)

The summary of this model shows the following:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0654 0.0107 6.14 8.8e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time) 7.69 8.49 28.8 <2e-16 ***

s(Time):IsTenth 9.01 9.66 293.9 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.267 Deviance explained = 26.8%

fREML = 16111 Scale est. = 0.71584 n = 12839

The model specification is now quite different. The first part, s(Time), indicates the
pattern over time which is included irrespective of the value of IsTenth (i.e. irrespective

of the word). The second part s(Time, by=IsTenth) has a special interpretation due to
IsTenth being a binary variable. In this case, the smooth is equal to 0 whenever the binary
variable equals 0. If the binary by-variable equals 1, it models a (potentially) non-linear
pattern without a centering constraint. In contrast to a normal centered smooth (e.g., see
Figure 2), these so-called binary smooths also model the constant difference between the
two levels. This is also the reason that the predictor IsTenth (or Word) should not be
included as a fixed-effect factor.

The interpretation of this model is now as follows. When IsTenth = 0 (i.e. for the word
‘tent’), the position of the sensor is modeled by s(Time) + 0. This means that the first

s(Time) represents the smooth for the word ‘tent’ (the reference level). When IsTenth =
1 (i.e. for the word ‘tenth’), the position of the sensor is modeled by s(Time) + s(Time,
by=IsTenth). Given that s(Time) models the pattern for the word ‘tent’, and both

smooths together model the pattern for the word ‘tenth’, it logically follows that s(Time,
by=IsTenth)models the difference between the non-linear patterns of ‘tenth’ and ‘tent’.

14

That this is indeed the case, can be seen by visualizing the binary difference smooth (i.e.
the partial effect) directly via plot(m2.bin, select=2, shade=TRUE). Note that the
parameter select determines which smooth to visualize (in this case, the second smooth
in the model summary, s(Time):IsTenth), whereas the parameter shade is used to
denote whether the confidence interval needs to be shaded (i.e. when set to TRUE), or

whether dashed lines should be used (i.e. when set to FALSE, the default). The graphical
result of this command is shown in Figure 5, and this graph nicely matches Figure 4. It is
also clear that the partial effect includes the intercept difference, given that the smooth is
not centered. Importantly, the model summary shows that the non-linear pattern for the
difference between the two words is highly significant, thereby alleviating the need for
model comparison. (But note that we still have ignored the required random-effects
structure here.)

Of course, the disadvantage of this approach is that the difference smooth
simultaneously includes the non-linear as well as the intercept difference between the two
levels, and it may be desirable to separate these. Particularly, we might be interested in
assessing if the difference between the two words is significant due to a constant difference,
a non-linear difference, or a combination of the two. It is also important to keep in mind that
each distinct binary predictor (e.g., IsTenth) may only occur exactly once in the model
specification. Otherwise, the model is not able to determine which of the binary difference
smooths will include the constant difference between the two words. For more details, see
Section 5.4.2.1 in the supplementary material.

Figure 5. Visualization of the binary difference smooth (partial effect) of model m2.bin. Note that this non-
linear pattern is similar to that visualized in Figure 4.

4.5.3 Refitting the model with an ordered factor difference smooth
Fortunately, separating the intercept difference and the non-linear difference is possible as
well. In that case, one can use an ordered factor predictor instead of the binary (dummy)
predictor. The ordered factor can be created as follows (the ‘O’ is appended here to the
original variable name to indicate mnemonically that it is an ordered factor):

dat$WordO <- as.ordered(dat$Word)

contrasts(dat$WordO) <- "contr.treatment"

15

It is essential to set the contrasts of the ordered factor to contrast treatment. This ensures
that the contrasts of the ordered factor are identical to using a binary predictor (i.e.
contrasting other levels to a reference level, whose value is set to 0). The model can now be
fit as follows:

m2.ord <- bam(Pos ~ WordO + s(Time) + s(Time, by=WordO),

 data=dat)

The model specification is very similar to m2.bin, with two changes. The first is that the
smooth s(Time, by=IsTenth)is replaced by s(Time, by=WordO). The second is

that WordO is added as a fixed-effect factor. The reason for this is that the ordered factor
difference smooth is centered (as the normal smooths), and the constant difference
between the two words needs to be included explicitly. Fitting the model yields the
following model summary:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0655 0.0107 6.14 8.3e-10 ***

WordOtenth 0.6624 0.0149 44.34 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time) 7.69 8.48 28.8 <2e-16 ***

s(Time):WordOtenth 8.02 8.66 99.8 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.267 Deviance explained = 26.8%

fREML = 16111 Scale est. = 0.71584 n = 12839

This model is essentially identical to model m2.bin (i.e. the fREML score and the
predictions of the two models are the same). Comparing the two summaries, it is clear that
model m2.ord has an additional parametric coefficient (similar to the constant difference

shown in model m2) which models the constant difference between the word ‘tenth’ and
‘tent’. Comparing the effective degrees of freedom of the final (difference) smooth in both
models shows that they almost exactly differ by 1 (m2.ord: 8.02, m2.bin: 9.01). This
reflects the intercept difference, which is included in the final non-centered smooth in the
binary smooth model, but by a separate parametric coefficient in the ordered factor
difference smooth model. Visualizing the difference smooth of model m2.ord in Figure 6
indeed reveals that the pattern is identical to the pattern shown in Figure 5. The only
exception is that it is centered in Figure 6. In principle, the width of the confidence bands
will also differ, as the binary smooth incorporates the uncertainty about the intercept
difference. In this case, however, the intercept difference has a very low standard error (see
the estimate of WordOtenth in the summary of m2.ord), and this difference is therefore
visually undistinguishable.

The advantage of the ordered factor approach over the binary approach is that the
constant difference (shown in the parametric coefficients part of the model) and the non-
linear difference can be distinguished when using an ordered factor. For both a p-value is
shown which can be used to assess if the difference between two patterns is caused by a

16

non-linear difference over time, a constant difference, or both. In this case both are highly
significant, but there are situations in which there might be a lot of certainty about the non-
linear difference, but less so about the intercept difference. In that case, the use of a binary
difference smooth would show a non-linear pattern with a very wide confidence interval,
which might lead one to incorrectly conclude that there is insufficient support for a non-
linear pattern.

Figure 6. Visualization of the binary difference smooth (partial effect) of model m2.ord. Note that this non-
linear pattern is identical to that visualized in Figure 5, except that this pattern is centered.

4.6 Model criticism
We have already shown part of the output of the function gam.check in Section 4.3.
Besides checking if the basis dimension for the smooths is sufficient, this function also
provides important diagnostic information about the model. In particular, the function also
results in a series of four graphs, shown in Figure 7.

The top-left graph shows a normal quantile plot of the (deviance) residuals of the
model. If the residuals are approximately normally distributed, they should approximately
follow the straight line. Correspondingly, the histogram of the residuals is shown in the
bottom-left graph. For model m2 the residuals are approximately normally distributed,
thereby satisfying one of the (Gaussian) model assumptions. The underlying idea of
requiring a normal distribution of the residuals, is that the part which is left unexplained by
the model (i.e. the residuals) are assumed to represent random noise and therefore should
follow a normal distribution. The remaining two plots can be used to assess
heteroscedasticity (i.e. unequal variance depending on the values of the predictors in the
top-right graph, or the fitted values in the bottom-right graph). Substantial differences in
the variability over the range of the values of the predictors and fitted values point to
problems in the model fitting (as homogeneity of variances is one of the leading
assumptions of the model), and affect the standard errors of the model. In this case, there
seems to be only minor heteroscedasticity present, which is unlikely to be a problem. An
example of clear heteroscedasticity would be revealed by a distinct pattern in the residuals,
such as a ‘V’-like shape where increasing variability is associated with increasing values of
the predictor. If there is much heteroscedasticity, including additional predictors or
transforming the dependent variable may help (see also Baayen, 2008: Section 6.2.3). In
addition, the function gam (but, presently, not bam) includes the family "gaulss", which is
able to model unequal variance in the context of a Gaussian model (see also Wood, 2017:
Section 7.9). Note that both scatter plots also nicely illustrate the dependencies within

17

trajectories (i.e. the spaghetti-like patterns), especially at the top and bottom of the graphs.
These dependencies will also need to be taken into account (see Section 4.8).

One essential point, which we have been ignoring up until now, is that in our present
model every individual data point is treated as being independent. This is, of course,
completely wrong, given that each participant provides multiple productions. In addition, as
we are dealing with time series data, sequential points in time will also not be independent.
When incorrectly treating all data points as being independent, the net effect is that p-
values will be too low and confidence bands will be too thin (e.g., Judd et al., 2012). For an
appropriate analysis, we need to take these dependencies into account.

Figure 7. Diagnostic plots visualizing the distribution of the residuals of model m2 (normal quantile plot: top-
left; histogram: bottom-left) and heteroscedasticity (over time: top-right; depending on fitted values: bottom-
right). See text for details.

4.7 Mixed-effects regression within the GAM framework
By using mixed-effects regression we are able to take the structural variability in our data
into account, and thereby obtain reliable and generalizable results (i.e. results not specific
to our sample). In mixed-effects regression a distinction is made between fixed-effect
factors and random-effect factors. Fixed-effect factors are nominal (i.e. factor) variables
with a small number of levels, out of which all (or most) levels are included in the data. For
example, both native and non-native speakers are present in our data. In addition,
numerical predictors are always part of the fixed-effects specification of the model. In a
regular linear (non-mixed-effects) regression model, the fixed effects are all predictors

18

which are included in the model. Random-effect factors are those factors which introduce
systematic variation, generally have a large number of levels, and which the researcher
would like to generalize over. In many studies in linguistics, the random-effect factors
include participant and word, as the levels of these factors are sampled from a much larger
population (i.e. other participants and other words could have been included). Note that for
the present small dataset the predictor Word is a fixed-effect factor, given that we are
currently only interested in the difference between the two words ‘tenth’ and ‘tent’.

With respect to random-effect factors, it is important to distinguish random
intercepts and random slopes. Some speakers (or words) will on average have a more
anterior tongue position than others, and this structural variability is captured by a by-
speaker (or by-word) random intercept. Failing to take this variability into account
generally results in overconfident (i.e. too low) p-values (Baayen et al., 2008; Judd et al.,
2012). Random slopes allow the influence of a predictor to vary for each level of the
random-effect factor. For example, the exact difference between the word ‘tenth’ and ‘tent’
may vary per speaker. It is essential to assess which random intercepts and slopes need to
be included, as failing to include a necessary random slope may yield p-values which are
overconfident (Gurka et al., 2011). For example, suppose that ninety percent of the speakers
shows a negligible difference between ‘tenth’ and ‘tent’, and the remaining ten percent
shows a substantial difference, the average difference might be just above the threshold for
significance. However, it is clear that in the above situation this difference should not reach
significance (given that the majority of speakers do not show the effect). Including a by-
speaker random slope for the word contrast would account for this individual variability
and result in a more appropriate (higher) p-value. Of course, if there is almost no individual
variability, model comparison will reveal that the random slope is unnecessary. For more
information about the merits about mixed-effects regression, we refer the interested reader
to Baayen et al. (2008), Baayen (2008), Winter (2013), and Winter & Wieling (2016).

We would like to remark that even though the paper of Barr et al. (2013) was
important in that it made researchers aware that a random-effects structure only consisting
of random intercepts is often problematic, we are not in favor of an approach in which the
maximally possible random-effects structure is used (Barr et al., 2013). Instead, we are
proponents of using model selection (e.g., used by Wieling et al., 2011, 2014) to determine
the optimal random-effects structure appropriate for the data. The advantage of such an
approach is that it does not result in a lack of power (as the maximal approach does;
Matuschek et al., 2017) and is more suitable to be used in conjunction with generalized
additive modeling (Baayen et al., 2017).

Within the generalized additive modeling framework, random intercepts, random
slopes and non-linear random effects can be included. In the following, we will see how to
construct these generalized additive (mixed) models.

4.7.1 Including a random intercept
To add a random intercept per speaker to a GAM, the following model specification can be
used (the difference with respect to m2, i.e. the random intercept, is again marked in
boldface):

m3 <- bam(Pos ~ Word + s(Time, by=Word) + s(Speaker,bs="re"),

 data=dat)

As random effects and smooths are linked (see Wood, 2017), random intercepts and slopes
may be modeled by smooths. For these random-effect smooths the basis needs to be set to
the value "re". The first parameter of the random-effect smooth is the random-effect
factor. If there is a second parameter (besides the obligatory bs="re" part), this is

19

interpreted as a random slope for the random-effect factor. If there is only a single
parameter (as in m3, above), it is interpreted to be a random intercept. As readers are likely
more familiar with the lme4 (Bates et al., 2014) function lmer to specify random effects, the
analogue of s(Speaker,bs="re") in lmer would be (1|Speaker). The summary of
m3 shows the following:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0919 0.0680 1.35 0.18

Wordtenth 0.6799 0.0134 50.91 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):Wordtent 7.77 8.61 36.3 <2e-16 ***

s(Time):Wordtenth 8.64 8.96 352.7 <2e-16 ***

s(Speaker) 40.58 41.00 86.9 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.427 Deviance explained = 42.9%

fREML = 14634 Scale est. = 0.56012 n = 12839

One additional line, s(Speaker), has been added to the list of smooth terms. The Ref.df
value shows the number of speakers minus one. Due to the penalization (i.e. effectively
representing shrinkage3 in the case of mixed-effects regression; see Baayen et al., 2008) the
estimated degrees of freedom will generally be somewhat lower than the value of Ref.df.
Importantly, however, the p-value associated with the random-effect smooth conveniently
indicates if the random intercept is necessary or not (in this case it is necessary), alleviating
the need for model comparison to assess the inclusion of random effects. Note that a clear
consequence of including the random intercept for speaker is that the estimate of the
intercept becomes much less certain (i.e. the standard error increases from about 0.01 to
0.07).

To visualize the effect of the random intercepts on the non-linear patterns, Figure 8
shows both smooths (left) as well as their difference (right). The commands to obtain these
graphs are similar to those shown above for model m2 (and can be found in the
supplementary material). There is one important difference, however. Both the
plot_smooth and the plot_diff functions will by default show the full effects.
Therefore, they will also select a specific speaker for which the visualized pattern is
applicable. As we are not interested in specific speakers (given that speaker is a random-
effect factor), we have to set the parameter rm.ranef to TRUE (this is reflected by the text
“excl. random” at the right edge of the graphs in Figure 8). For example, the call to
plot_smooth becomes:

3 Shrinkage ensures that the random intercepts (and slopes) are estimated to be a bit closer to the
population mean than the actual average values of the individual. This ensures that the influence of
outliers is reduced, while it also yields better estimates of the individuals’ performance (Efron &
Morris, 1977).

20

plot_smooth(m3, view="Time", plot_all="Word", rug=FALSE,

 rm.ranef=TRUE)

Comparing the left graph of Figure 8 to Figure 3 shows that the confidence bands of both
non-linear patterns have become wider (due to the increased uncertainty about the
intercept). Comparing the right graph of Figure 8 to Figure 4, however, does not reveal such
a difference. Given that the model does not include individual variability in the difference
between ‘tenth’ versus ‘tent’, this is not surprising.

Figure 8. Left: non-linear smooths (fitted values) for the word ‘tent’ (blue, dark) and the word ‘tenth’ (red, light)
in model m3. Shaded bands represent the pointwise 95%-confidence interval. Right: Differences between the
two (non-linear) smooths comparing the word ‘tenth’ to the word ‘tent’. When the shaded pointwise 95%-
confidence interval does not overlap with the x-axis (i.e. the value is significantly different from zero), this is
indicated by a red line on the x-axis (and vertical dotted lines).

4.7.2 Including a random slope
In similar fashion, we may include a by-speaker linear random slope (which would
correspond to tilting the non-linear pattern) for the two-word-contrast (Word) as follows:

m4 <- bam(Pos ~ Word + s(Time, by=Word) + s(Speaker,bs="re") +

 s(Speaker,Word,bs="re"), data=dat)

In the lmer specification this random slope would be represented by
(0+Word|Speaker). Unfortunately, in the GAM specification, it is not possible to model a
correlation between random intercepts and random slopes (i.e. an lmer specification such
as (1+Word|Speaker) is not possible). At present this is a drawback compared to linear
mixed-effects regression, at least when linear random slopes are used (but see 4.7.3, below).
The summary of model m4 is as follows.

21

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1091 0.0828 1.32 0.19

Wordtenth 0.6195 0.1032 6.00 2e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):Wordtent 7.95 8.71 44.6 < 2e-16 ***

s(Time):Wordtenth 8.70 8.97 433.0 < 2e-16 ***

s(Speaker) 15.48 41.00 1080.1 0.12

s(Speaker,Word) 64.59 81.00 960.4 2.9e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.534 Deviance explained = 53.7%

fREML = 13397 Scale est. = 0.45546 n = 12839

The summary shows an additional line, s(Speaker,Word), which is clearly significant,
thereby supporting the inclusion of the random slope. The random intercept has become
non-significant, indicating that most of the subject-variability is now captured by the
random slope (i.e. distinguishing the two words). As before, adding a more appropriate
random-effects structure affects the fixed effects (the supplementary material shows the
output of compareML(m3,m4): m4 is a significant improvement over m3, p < 0.001).
Specifically, the intercept (i.e. the average anterior position of the T1 sensor for the word
‘tent’) does not differ significantly from 0 anymore due to the larger uncertainty, and also
the constant difference between the word ‘tenth’ and ‘tent’ is associated with more
uncertainty (i.e. much larger standard errors).

Figure 9. Non-linear smooths and difference comparing ‘tenth’ to ‘tent’ for model m4. See details in Fig. 8
caption.

22

To visualize the effect of the additional random slope on the non-linear patterns, Figure 9
shows both smooths (left) as well as their difference (right). (As before, the parameter
rm.ranef has been set to TRUE in the plotting functions.) Comparing the left graph of
Figure 9 to the left graph of Figure 8, the confidence bands are slightly wider, reflecting the
increased standard errors in the model summary. The greatest change can be observed with
respect to confidence bands of the difference, which have become much wider comparing
the right graph of Figure 9 (m4) to the right graph of Figure 8 (m3). This, of course, is in line
with allowing (necessary) variability in the difference between the two words ‘tenth’ and
‘tent’, and it mirrors the pattern visible in the model summary of m4.

4.7.3 Including non-linear random effects
While we are now able to model random intercepts and random slopes, our present model
does not yet take the individual (non-linear) variability in the anterior position of the T1
sensor over time into account. Consequently, there is a need for a non-linear random effect.
Fortunately, this is possible within the generalized additive modeling framework. The
following model specification illustrates how this can be achieved:

m5 <- bam(Pos ~ Word + s(Time, by=Word) + s(Speaker,Word,bs="re")

 + s(Time,Speaker,bs="fs",m=1), data=dat)

In this model the random intercept part has been replaced by the smooth specification
s(Time,Speaker,bs="fs",m=1). This is a so-called factor smooth (hence the "fs"
basis) which models a (potentially) non-linear difference over time (the first parameter)
with respect to the general time pattern for each of the speakers (the second parameter: the
random-effect factor). (Note the different ordering compared to the random intercepts and
slopes.) The final parameter, m, indicates the order of the non-linearity penalty. In this case
it is set to 1, which means that the first derivative of the smooth (i.e. the speed) is penalized,
rather than the, default, second derivative of the smooth (i.e. the acceleration). Effectively,
this results in factor smooths which are penalized more strongly than regular smooths. This,
in turn, means that the estimated non-linear differences for the levels of the random-effect
factor are assumed to be somewhat less ‘wiggly’ than their actual patterns. This reduced
non-linearity therefore lines up nicely with the idea of shrinkage of the random effects (see
footnote 3). Importantly, the factor smooths are not centered (i.e. they contain an intercept
shift), and therefore the by-speaker random intercept term was dropped from the model
specification. The summary of model m5 is shown below:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0768 0.0967 0.79 0.43

Wordtenth 0.6196 0.1032 6.00 2e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):Wordtent 7.47 8.03 9.61 2.6e-13 ***

s(Time):Wordtenth 8.59 8.81 44.66 < 2e-16 ***

s(Speaker,Word) 62.42 81.00 52.09 < 2e-16 ***

s(Time,Speaker) 297.13 377.00 1168.20 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

23

R-sq.(adj) = 0.67 Deviance explained = 67.9%

fREML = 11601 Scale est. = 0.32275 n = 12839

The final line, s(Time,Speaker), of the model shows the factor smooth (i.e. the by-
subject non-linear random effect for time) and the associated p-value clearly shows it is
necessary to include this random effect in the model. A visualization of these factor smooths
can be obtained via plot(m5, select=4) and is shown in Figure 10. Comparing the
different random-effects structure of models m4 and m5 (using compareML(m4,m5); the
default fREML estimation method now is appropriate as only random effects are compared)
shows m5 is preferred over m4.

Chi-square test of fREML scores

 Model Score Edf Chisq Df p.value Sig.

1 m4 11732.645 8

2 m5 9755.733 9 1976.912 1.000 < 2e-16 ***

AIC difference: 4453.17, model m5 has lower AIC.

Figure 11 shows the impact of this more complex random-effects structure on the resulting
smooths (left), as well as their difference (right). Comparing the left graph of Figure 11 to
the left graph of Figure 9, the confidence bands again are slightly wider, and the patterns
also become slightly different. This is a logical consequence of allowing variability in the
specific tongue trajectories for each individual speaker. By contrast, the confidence bands
around the difference smooth have not changed. However, this is unsurprising given that m5
only models a single non-linear pattern over time, and the model does not yet allow for
individual variability over time in distinguishing ‘tenth’ from ‘tent’.

To also include this type of (essential) random-effect variability, we fit the following
model:

m6 <- bam(Pos ~ Word + s(Time, by=Word) +

 s(Time,Speaker,by=Word,bs="fs",m=1), data=dat)

Figure 10. Visualization of by-subject factor smooths over time of model m5.

24

The new model specification contains two changes. The first change consists of adding
by=Word to the factor smooth specification. The second change is dropping the by-speaker
random slope for Word. The reason for dropping the speaker-based variability in the
constant difference between ‘tenth’ versus ‘tent’, is that this constant difference is already
incorporated by the non-centered factor smooth (i.e. by including two non-centered
smooths per speaker).

The summary of the model shows the following:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0844 0.0968 0.87 0.38

Wordtenth 0.5902 0.1427 4.14 3.6e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):Wordtent 7.59 8.00 9.41 4.4e-13 ***

s(Time):Wordtenth 8.42 8.58 23.44 < 2e-16 ***

s(Time,Speaker):Wordtent 315.66 377.00 38.05 < 2e-16 ***

s(Time,Speaker):Wordtenth 327.18 368.00 43.13 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.782 Deviance explained = 79.3%

fREML = 9397.5 Scale est. = 0.21325 n = 12839

Figure 11. Non-linear smooths and difference comparing ‘tenth’ to ‘tent’ for model m5. See details in Fig. 8
caption.

25

It is clear from the summary that both factor smooths (one for each word) are necessary.
Furthermore, model comparison (see supplementary material) also revealed that the
additional complexity of model m6 over model m5 was warranted. Figure 12 visualizes the
associated non-linear patterns and mainly shows that the confidence bands for the non-
linear difference distinguishing ‘tenth’ from ‘tent’ have become much wider compared to
Figure 11 (i.e. m5). Of course, this is expected given that m6 allows for individual variability
in the articulatory trajectories over time for the two words.

Figure 12. Non-linear smooths and difference comparing ‘tenth’ to ‘tent’ for model m6. See details in Fig. 8
caption.

4.8 Taking into account autocorrelation in the residuals
In the previous section, we have accounted for the speaker-specific variability in the data,
by using a (non-linear) mixed-effects regression approach. However, as we are analyzing
time-series data, there is another type of dependency involved. Specifically, the residuals
(i.e. the difference between the fitted values and the actual values) of subsequent time
points in the time series will be correlated. How severe this so-called autocorrelation is, can
be seen in Figure 13. This graph was obtained by using the itsadug function acf_resid:

m6acf <- acf_resid(m6)

The first vertical line in this autocorrelation graph is always at height 1 (i.e. each point has a
correlation of 1 with itself). The second line shows the amount of autocorrelation present at
a lag of 1 (i.e. comparing measurements at time t-1 and time t). In Figure 13, this value is
about 0.91, which means that each additional time point only yields relatively little
additional information. (There is also autocorrelation present at higher lags, but this may
(partly) be caused by the autocorrelation at lag 1.) If this dependency is not brought into the
model, it is likely that the strength of the effects is severely overestimated. Fortunately, the
function bam is able to incorporate an AR(1) error model for the residuals. While an AR(1)
model is a very simple model of autocorrelation and may not be adequate to alleviate the
autocorrelation problem, in most cases this simple approach seems to be sufficient.

26

Figure 13. Autocorrelation graph for model m6. The height of the second line indicates the amount of
autocorrelation at lag 1.

Note that autocorrelation can only be assessed adequately if the dataset is ordered
(otherwise the autocorrelation graph is useless as a diagnostic tool). This means that for
each speaker and each word pronunciation (and sensor, and axis, if applicable), the rows
have to be ordered by (increasing) time. Consequently, in the dataset each separate time
series will have to be positioned one after another. To make sure the data is ordered, it is
useful to use the itsadug function start_event:

dat <- start_event(dat, event=c("Speaker","Trial"))

The function start_event assumes there is a column Time in dataset dat, including the
time points associated with each data point. It subsequently orders the data by Time for

each individual time series as determined by the event parameter (in this case, there is a
single articulatory trajectory of the T1 sensor in the anterior-posterior dimension for every
combination of Speaker and Trial). In addition, this function adds a column
start.event to the dataset which is equal to TRUE whenever the row is associated with

the first data point of every time series and equal to FALSE otherwise. This column is useful
to identify which subsequent points are expected to show autocorrelation in the residuals.
Whenever the value of the column start.event equals FALSE, the residual at that point
is assumed to correlate with the residual at the previous point, whereas if the column
equals TRUE this is not expected to be the case (i.e. the residual of the first point in a new
trial is not assumed to be correlated with the residual of the last point of the previous trial,
as the words were not pronounced immediately after one another).

As indicated, the function bam is able to incorporate an AR(1) error model for the
residuals in a Gaussian model. There are two additional parameters which need to be set for
this. The first parameter is rho. This is an estimate of the amount of autocorrelation. Using
the height of the second line in the autocorrelation graph (i.e. m6acf[2]) is generally a
good estimate. The second parameter is AR.start which equals TRUE at the start of a new

time series and FALSE otherwise. This parameter should be set to the column
start.event of the data frame (in our case, dat) if the function start_event was
used. The revised bam function call now becomes:

27

m7 <- bam(Pos ~ Word + s(Time, by=Word) +

 s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,

 rho=m6acf[2], AR.start=dat$start.event)

Inspecting the new autocorrelation graph in Figure 14, shows that the autocorrelation has
been removed almost completely. As the autocorrelation at lag 1 is slightly negative, a lower
rho value might seem a better option. However, the supplementary material (model
m7.alt) shows that this resulted in an increase of the autocorrelation at higher lags. We
therefore used a rho value of 0.912 in all subsequent models in Section 4. In our
experience, setting the rho value to the autocorrelation at lag 1 as determined via the acf
function is the best approach to correct for autocorrelation, and this is the approach we use
throughout the manuscript.

The summary of model m7 shows the following:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0791 0.0875 0.9 0.37

Wordtenth 0.5814 0.1292 4.5 6.8e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):Wordtent 7.47 8.12 9.00 2.8e-12 ***

s(Time):Wordtenth 8.32 8.60 22.05 < 2e-16 ***

s(Time,Speaker):Wordtent 229.34 377.00 2.87 < 2e-16 ***

s(Time,Speaker):Wordtenth 267.85 368.00 3.84 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.763 Deviance explained = 77.3%

fREML = -3286.8 Scale est. = 0.18714 n = 12839

Figure 14. Autocorrelation graph for model m7 (rho = 0.912). The height of the second line indicates the
amount of autocorrelation at lag 1.

28

The visualization in Figure 15 shows that including the autocorrelation in the residuals has
had only a negligible influence on the standard errors (the F-values associated with the
smooths in the model summaries are only slightly lower). Note that the explained deviance
has dropped slightly. This is due to the model taking into account the autocorrelation, and
therefore predicting the actual values slightly less well than before.

Figure 15. Non-linear smooths and difference comparing ‘tenth’ to ‘tent’ for model m7 (using a rho value of
0.912). See details in Fig. 8 caption.

4.9 Including a two-dimensional interaction
Frequently, it is very insightful to look at interactions which involve two numerical
predictors. To illustrate how two-dimensional non-linear interactions can be included, we
will extend the above model by investigating if there are trial effects present in our data.
Trial effects are frequently included in the analysis, in order to take into account effects of
repetition (Winter, 2005), fatigue, attention, or learning (Baayen et al., 2017). While this
interaction is not particularly interesting for our data, given that we only focus on a few
trials (in this example, only four trials), we nevertheless include it here to illustrate the
concepts necessary to understand two-dimensional non-linear interactions.
 A thin plate regression spline can also be used to model non-linear interactions.
However, it is essential that the predictors involved in a thin plate regression spline
interaction are isotropic, i.e. they need to be measured on the same scale (such as longitude
and latitude; see Wieling et al., 2011 for an example). In a thin plate regression spline the
amount of non-linearity associated with a unit change in the value of each incorporated
predictor is assumed to be identical, and this assumption is only valid for isotropic
predictors.

To model predictors which are not on the same scale (such as Time and Trial in
our case), a tensor product smooth interaction (in short, tensor product) can be used. A
tensor product essentially models a non-linear interaction by allowing the coefficients
underlying the smooth for one variable to vary non-linearly depending on the value of the
other variable (see Wood, 2017: 227-232). In mgcv, a tensor product can be included in the
model specification by using the te function. By default, the te-constructor uses two

(default) 5-dimensional cubic regression splines (bs="cr"). Consequently, the k-

29

parameter for each variable is limited to 5: k=5. Extending model m7 to include a two
dimensional interaction between Time and Trial thus results in the following function
call:

m8 <- bam(Pos ~ Word + te(Time, Trial, by=Word) +

 s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,

 rho=0.912, AR.start=dat$start.event)

The summary shows the following:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0479 0.0895 0.54 0.59

Wordtenth 0.6084 0.1328 4.58 4.6e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

te(Time,Trial):Wordtent 9.16 10.03 8.08 3.7e-13 ***

te(Time,Trial):Wordtenth 8.57 8.78 16.20 < 2e-16 ***

s(Time,Speaker):Wordtent 231.45 377.00 2.89 < 2e-16 ***

s(Time,Speaker):Wordtenth 278.97 368.00 4.11 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.777 Deviance explained = 78.6%

fREML = -3282.8 Scale est. = 0.18683 n = 12839

It is clear that the s-terms have been replaced by te-terms in the summary. In both cases,
however, the effective degrees of freedom of the tensor products have not changed much. Of
course, visualization is essential to see what is going on. As we need to visualize two-
dimensional patterns, we have to use other visualization functions than before. In
particular, we will use the itsadug functions fvisgam and plot_diff2 which both yield
contour plots. (Note that the function fvisgam differs from the mgcv function vis.gam in
that it allows random effects to be excluded from the visualization.)
 The commands to visualize the contour plots for ‘tent’ and for ‘tenth’, as well as their
difference are as follows:

fvisgam(m8, view=c("Time","Trial"), cond=list(Word=c("tent")),

 main='m8: tent', rm.ranef=TRUE,

 zlim=c(-0.9,1.6),color='gray')

fvisgam(m8, view=c("Time","Trial"), cond=list(Word=c("tenth")),

 main='m8: tenth', rm.ranef=TRUE,

 zlim=c(-0.9,1.6), color='gray')

plot_diff2(m8, view=c("Time","Trial"),

 comp=list(Word=c("tenth","tent")), rm.ranef=TRUE,

 main='Difference tenth - tent',

 color='gray')

30

For both functions, the first parameter is the model name. The second parameter, view,
should contain two variable names included in the tensor product of the model. The first
variable is plotted at the x-axis, whereas the second variable is plotted at the y-axis. Other
common parameters include main, which sets the title of the plot, rm.ranef, which (if set
to TRUE) excludes the influence of the random effects when creating the visualization,
color, which sets the color scheme (in this case, grayscale), and zlim, which sets the
lower and upper limit of the color range.

Furthermore, the function fvisgam has an additional cond parameter, which is a
named list containing the value of the predictors in the model which should be fixed (i.e. in
this case only the specific word). The function plot_diff2 has a comp parameter to
determine which two levels should be compared (see explanation for plot_diff above).
The resulting three contour plots are shown in Figure 16. Lighter shades of gray indicate
higher values (i.e. a more anterior T1 position), whereas darker shades of gray indicate
lower values. Black contour lines connect points with identical values. For example, the
contour plot associated with ‘tent’, shows two peaks over time (around 0.2 and 0.7), which
are reduced in size for later trials. By contrast, the contour plot associated with ‘tenth’
shows a single, higher peak over time (around 0.7) which gets lower (and somewhat
delayed) for later trials. To further help interpretation, Figure 17 shows a visualization of
the difference contour plot together with the associated one-dimensional differences
smooths for three trials (trial 500, 300, and 100). The one-dimensional graphs have been
generated using the function plot_diff with the parameter cond set to (e.g.,)
list(Trial=100). In this case, all three one-dimensional graphs show a very similar
pattern, with only slightly higher and earlier peaks for earlier trials. (The black dotted lines
have been added to each graph to make these differences more apparent.)

The two-dimensional tensor product of time and trial implicitly incorporates three
parts: an effect over time, an effect over trial, and the pure interaction between the two.
Inspecting Figure 16 and 17, it does not appear there is a very strong influence of trial.
Consequently, it makes sense to see whether an effect of trial would need to be included at
all. For this reason, it is useful to decompose the tensor product into its separate parts.
While we already have seen how to model one-dimensional smooths, we need to introduce
a new constructor, ti, to model a pure interaction term. This constructor, with identical

syntax as the te-constructor, models the pure interaction between the variables. The
specification of the model (m8.dc) of the decomposed tensor product is as follows:

m8.dc <- bam(Pos ~ Word + s(Time, by=Word) + s(Trial, by=Word) +

 ti(Time, Trial, by=Word) +

 s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,

 rho=0.912, AR.start=dat$start.event)

The summary of the model is as follows:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0550 0.0894 0.62 0.54

Wordtenth 0.6361 0.1314 4.84 1.3e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):Wordtent 7.47 8.13 9.02 2.6e-12 ***

31

s(Time):Wordtenth 8.32 8.60 22.01 < 2e-16 ***

s(Trial):Wordtent 1.00 1.00 16.03 6.3e-05 ***

s(Trial):Wordtenth 1.62 1.90 8.37 0.00019 ***

ti(Time,Trial):Wordtent 1.00 1.00 3.58 0.05865 .

ti(Time,Trial):Wordtenth 1.67 2.03 2.31 0.09316 .

s(Time,Speaker):Wordtent 229.36 377.00 2.89 < 2e-16 ***

s(Time,Speaker):Wordtenth 268.42 368.00 3.89 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.778 Deviance explained = 78.7%

fREML = -3300.8 Scale est. = 0.18649 n = 12839

Figure 16. Contour plots visualizing the non-linear interactions between time and trial for the word ‘tent’ (top-
left), ‘tenth’ (top-right) and their difference (bottom-left).

32

Figure 17. Difference contour plot showing the interaction between time and trial (left). The plots on the right
show the corresponding non-linear pattern over time for three distinct trials: 500 (top row), 300 (middle row)
and 100 (bottom row). The dotted black lines at (1.035, 0.745) facilitate comparison between the three graphs.

33

Clearly, the main effects of time and trial for both words are still significant. While the
smooths over time are non-linear (high edf), the smooths over trial are (almost) linear
(edf close to 1). Furthermore, the pure interaction between time and trial is not significant.
The relative size of the effects (excluding the non-significant interactions) can be visualized
using the mgcv plot function and is shown in Figure 18. It is clear that the influence of the
trial number on the anterior position of the T1 sensor is relatively modest and (almost)
linear. While the significant trial effects may seem interesting, we hasten to add that we only
investigate four trials per speaker in this example. Therefore, any trial effects we observe
here will necessarily be linked to where in the experiment each speaker encountered the
two words, and will almost certainly not be representative of real trial effects.
Consequently, and also to keep the models relatively simple, we will exclude trial effects in
the remaining part of this tutorial.

Figure 18. Visualization of the partial effects of model m8.dc over time (top row), and trial (bottom row) for
the word ‘tent’ (left column) and ‘tenth’ (right column). The shaded bands in the top two rows denote the
pointwise 95%-confidence intervals.

4.10 Including the language difference
We only considered the anterior-posterior T1 articulation difference between the two
words in the models above, but a more relevant question is how this difference varies
depending on the language of the speaker. As the sound /θ/ does not occur in the Dutch

34

language, we are particularly interested in assessing if Dutch speakers show a different (i.e.
smaller) contrast between a minimal pair involving /θ/ versus /t/ than the English
speakers. Whereas a naive approach to achieve this might be to fit two separate models
(one for each language) and visually compare the patterns, this approach is not adequate.
By fitting two separate models it is not possible to evaluate whether the additional
complexity (i.e. the addition of the language factor) is warranted. For example, while a
visual comparison (even when fitting a single model for all data) may show that the
patterns are relatively similar, there may be enough evidence to conclude that the small
difference between them is real. Alternatively, the two patterns may seem quite different,
but if the confidence bands are very wide, the difference between the two patterns may
never be significantly different from zero. Note that a difference in significance of the
patterns is also not informative. For example, even though the confidence bands for the
non-linear difference between might be completely overlapping with the x-axis for one
group, but not for the other group, they may still be statistically indistinguishable. For
example, the patterns may be identical, with simply more variability (i.e. wider confidence
bands) for one group than the other. In sum, a visual inspection does not provide enough
information to decide if the additional complexity is necessary. Instead, we follow the
approach put forward in Section 4.5 and more formally evaluate whether the additional
complexity is warranted.

To distinguish the two language groups, we first create a new variable which is the
interaction between Word and Lang (i.e. having four levels, the words ‘tent’ and ‘tenth’ for
both English and Dutch speakers):

dat$WordLang <- interaction(dat$Word, dat$Lang)

We now use this new variable in our model instead of Word:

m9 <- bam(Pos ~ WordLang + s(Time, by=WordLang) +

 s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,

 rho=0.912, AR.start=dat$start.event)

Comparing model m9 to model m7 (both now fitted with method="ML" and named m7.ml
and m9.ml) shows that it is necessary to include a distinction between languages:

m7.ml: Pos ~ Word + s(Time, by = Word) + s(Time, Speaker, by =

 Word, bs = "fs", m = 1)

m9.ml: Pos ~ WordLang + s(Time, by = WordLang) + s(Time, Speaker,

 by = Word, bs = "fs", m = 1)

Chi-square test of ML scores

 Model Score Edf Difference Df p.value Sig.

1 m7.ml -3292 10

2 m9.ml -3307 16 14.984 6.000 3.986e-05 ***

AIC difference: 7.62, model m9.ml has lower AIC.

The summary of model m9 now shows three contrasts with respect to the intercept (in this
case the reference level is the word ‘tent’ for the native English speakers) and four smooths,
one for each level of the new nominal variable.

35

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.098 0.119 -0.82 0.410

WordLangtenth.EN 0.732 0.174 4.20 2.7e-05 ***

WordLangtent.NL 0.362 0.173 2.09 0.037 *

WordLangtenth.NL 0.790 0.182 4.34 1.4e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):WordLangtent.EN 3.84 4.53 2.27 0.045 *

s(Time):WordLangtenth.EN 7.95 8.37 15.77 < 2e-16 ***

s(Time):WordLangtent.NL 7.48 8.15 10.67 1.9e-15 ***

s(Time):WordLangtenth.NL 7.73 8.21 11.72 < 2e-16 ***

s(Time,Speaker):Wordtent 218.56 376.00 2.67 < 2e-16 ***

s(Time,Speaker):Wordtenth 255.53 367.00 3.49 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.763 Deviance explained = 77.2%

fREML = -3299 Scale est. = 0.18711 n = 12839

The results of this model are shown in Figure 19. The top row shows the individual smooths
for the English speakers (top-left) as well as the difference (top-right) which reveals a clear
and significant pattern. The bottom row shows the same graphs for the Dutch speakers,
with a much smaller difference between the two words. Whether or not the latter (small)
difference is significant, should be assessed formally, however.

For this reason, we re-specify the model using ordered factors. As we want to
evaluate the difference between ‘tenth’ and ‘tent’ for both the English and Dutch speakers,
separately, we create two reference levels via s(Time, by=Lang) + Lang, one for each

group. We then create two separate ordered factors. One factor (ENTenthO) is set to
"TRUE" whenever the word equals ‘tenth’ and the language is English and "FALSE"
otherwise, whereas the other factor (NLTenthO) is set to "TRUE" whenever the word

equals ‘tenth’ and the native language is Dutch and "FALSE" otherwise. The complete
model specification, including the creation of the two ordered factors is as follows:

dat$ENTenthO <- as.ordered(dat$Lang == "EN" &

 dat$Word == "tenth")

contrasts(dat$ENTenthO) <- "contr.treatment"

dat$NLTenthO <- as.ordered(dat$Lang == "NL" &

 dat$Word == "tenth")

contrasts(dat$NLTenthO) <- "contr.treatment"

36

Figure 19. Non-linear smooths and difference comparing ‘tenth’ to ‘tent’ for model m9 for both English (top
row) and Dutch speakers (bottom row). See details in Fig. 8 caption.

m9.ord <- bam(Pos ~ Lang + ENTenthO + NLTenthO +

 s(Time, by=Lang) + s(Time, by=ENTenthO) +

 s(Time, by=NLTenthO, k=20) +

 s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,

 rho=0.912, AR.start=dat$start.event)

Note that the ordered factor difference smooth for the Dutch speakers was oversmoothed
(with an edf of about 2) compared to Figure 19. Consequently, we increased the k-value to
20. Note, however, that this did not affect the global pattern of results, nor our conclusion.
The summary of model m9.ord is as follows:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0939 0.1190 -0.79 0.430

37

LangNL 0.3638 0.1733 2.10 0.036 *

ENTenthOTRUE 0.7282 0.1739 4.19 2.8e-05 ***

NLTenthOTRUE 0.4471 0.1862 2.40 0.016 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):LangEN 4.32 5.05 2.38 0.037 *

s(Time):LangNL 7.85 8.33 12.59 < 2e-16 ***

s(Time):ENTenthOTRUE 7.66 8.12 8.68 4.4e-12 ***

s(Time):NLTenthOTRUE 8.27 10.80 1.08 0.294

s(Time,Speaker):Wordtent 217.80 376.00 2.66 < 2e-16 ***

s(Time,Speaker):Wordtenth 254.96 367.00 3.46 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.762 Deviance explained = 77.2%

fREML = -3302.8 Scale est. = 0.18713 n = 12839

The position of the T1 sensor in the anterior-posterior position of the English speakers for
the word ‘tenth’ can be found at the intercept of the parametric coefficients. It is clear from
the line for LangNL that Dutch speakers differ significantly from the English speakers for
the reference-level word ‘tent’. When focusing on the English speakers, the line starting
with ENTenthOTRUE indicates that the English speakers show a more frontal position for
the word ‘tenth’ than for the word ‘tent’ during the pronunciation of the whole word, and
that this difference is significant. Similarly, the line starting with NLTenthOTRUE shows
that there is a significant constant difference between the word ‘tenth’ and ‘tent’ for the
Dutch speakers. (Since NLTenthO is never "TRUE" for the English speakers, it functions
only as a contrast for the Dutch speakers.) It is useful to compare the estimates of model
m9.ord to those of model m9. In m9, the estimate for WordLangtent.NL is about 0.36
(higher than the reference level), whereas it is 0.79 (higher than the same reference level)
for WordLangtenth.NL. Clearly the difference between ‘tenth’ and ‘tent’ for the Dutch
speakers is therefore about 0.43. And this value is indeed close to the value of 0.45 shown
by the line associated with NLTenthOTRUE in model m9.ord. Note that the computation
does not exactly hold, as the models are not completely identical (i.e. in one model separate
smooths for each level are included, whereas the other model includes explicit difference
smooths).
 Similarly to the parametric coefficients, there are now two difference smooths, one
for the English speakers (s(Time):ENTenthOTRUE) which is highly significant, and one
for the Dutch speakers (s(Time):NLTenthOTRUE) which is not. When dropping this non-
significant smooth and refitting the model, the constant difference between ‘tenth’ and ‘tent’
also does not reach significance anymore (p = 0.084; see supplementary material: model
m9.ord2). We therefore conclude that there is not enough support for a statistically
significant (non-linear) difference between the word ‘tent’ and the word ‘tenth’ for the
Dutch speakers, at least not when taking the complete word pronunciation into account. To
provide further support for this conclusion, we may also investigate this difference using a
binary difference smooth (combining the intercept and non-linear difference). The
specification for this model, including the creation of the two binary variables is as follows:

dat$IsENTenth <- (dat$Lang == "EN" & dat$Word == "tenth")*1

38

dat$IsNLTenth <- (dat$Lang == "NL" & dat$Word == "tenth")*1

m9.bin <- bam(Pos ~ Lang + s(Time, by=Lang) +

 s(Time, by=IsENTenth) + s(Time, by=IsNLTenth, k=20)

 + s(Time,Speaker,by=Word,bs="fs",m=1), data=dat,

 rho=0.912, AR.start=dat$start.event)

The summary of this model shows the following:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0939 0.1189 -0.79 0.430

LangNL 0.3635 0.1733 2.10 0.036 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):LangEN 4.32 5.05 2.38 0.037 *

s(Time):LangNL 7.85 8.33 12.59 < 2e-16 ***

s(Time):IsENTenth 8.66 9.12 8.50 5.7e-13 ***

s(Time):IsNLTenth 9.27 11.80 1.44 0.190

s(Time,Speaker):Wordtent 217.80 376.00 2.66 < 2e-16 ***

s(Time,Speaker):Wordtenth 254.96 367.00 3.46 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.762 Deviance explained = 77.2%

fREML = -3302.8 Scale est. = 0.18713 n = 12839

On the basis of this model we also conclude that the English speakers clearly contrast the
words ‘tenth’ and ‘tent’, but the Dutch speakers do not. Figure 20 visualizes the partial
difference smooths for both the ordered factor difference model (m9.ord, top row) and the
binary difference model (m9.bin, bottom row). It is clear that the shapes are highly similar
to the calculated non-linear difference patterns of model m9. Furthermore, comparing the
top graphs (associated with m9.ord) to the bottom graphs (associated with m9.bin)
shows indeed that the ordered factor difference smooths are centered, and do not contain
the uncertainty about the intercept difference (which is quite substantial), whereas the
binary difference smooths are not centered and do contain the intercept uncertainty
(resulting in wider confidence bands).
 While this model suggests that we can now conclude that the Dutch and the English
speakers significantly differ in how they contrast ‘tenth’ from ‘tent’, this is not the case. As
was mentioned before (see first paragraph of Section 4.10), a difference in significance does
not mean that the patterns can also be reliably distinguished from each other. Even though
model comparison showed that model m9 (with the language distinction for both words)
was preferred over model m7 (without the language distinction), this might have been
caused only by the (substantial) difference in how both groups of speakers pronounce the
word ‘tent’ (see the blue, dark curves in Figure 19). Fortunately, it is also possible to
formally assess if the ‘tenth’ vs. ‘tent’ contrast significantly differs between the two groups
of speakers.

39

Instead of modeling a binary difference smooth separately for both groups, we
create a single binary difference smooth distinguishing ‘tenth’ from ‘tent’ without any
condition on the language (i.e. s(Time, by=IsTenth)) and also include the binary
difference smooth s(Time, by=IsNLTenth), which was also included in model
m9.bin. This model is specified as follows:

dat$IsTenth <- (dat$Word == "tenth")*1

m9b.bin <- bam(Pos ~ Lang + s(Time, by=Lang) +

 s(Time, by=IsTenth) + s(Time, by=IsNLTenth)

 + s(Time,Speaker,by=Word,bs="fs",m=1),

 data=dat, rho=0.912,

 AR.start=dat$start.event)

Figure 20. Visualization of the partial effects of model m9.ord (top row) and m9.bin (bottom row)
representing the difference between ‘tenth’ and ‘tent’ for both English (left) and Dutch (right) speakers. In all
graphs, the pointwise 95%-confidence intervals are visualized by shaded bands.

40

In this model, s(Time, by=IsNLTenth)represents the difference between the ‘tenth’-
‘tent’ contrast of the Dutch speakers versus that of the English speakers, while s(Time,

by=IsTenth) represents the difference between the ‘tenth’-‘tent’ contrast for the English
speakers (i.e. comparable to s(Time, by=IsENTenth) in model m9.bin). To see why
this is the case, it is useful to see which smooths are combined to model the four conditions.
It is helpful to first recall that s(Time, by=IsTenth) equals 0 for the word ‘tent’ and
represents a smooth without a centering constraint for the word ‘tenth’. Similarly,
s(Time, by=IsNLTenth) equals 0 for the word ‘tent’ pronounced by both groups and
also when the word ‘tenth’ is pronounced by the English speaker group. When the word
‘tenth’ is pronounced by the Dutch speaker group, s(Time, by=IsNLTenth) represents
a smooth without a centering constraint. The smooths which have to be summed for each
condition can therefore be listed as follows:

 English ‘tent’: s(Time):LangEN

 English ‘tenth’: s(Time):LangEN + s(Time, by=IsTenth)

 Dutch ‘tent’: s(Time):LangNL

 Dutch ‘tenth’: s(Time):LangNL + s(Time, by=IsTenth) +
 s(Time, by=IsNLTenth)

Following the same reasoning as in Section 4.5.1, s(Time, by=IsTenth) represents the
difference (i.e. the contrast) between ‘tenth’ and ‘tent’ for the English speakers. The contrast
between ‘tenth’ and ‘tent’ for the Dutch speakers consists of both s(Time, by=IsTenth)

and s(Time, by=IsNLTenth). Consequently, the difference between the Dutch and the
English ‘tenth’-‘tent’ contrast must be represented by s(Time, by=IsNLTenth).

The summary of m9b.bin shows that this difference does not reach significance:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0869 0.1187 -0.73 0.464

LangNL 0.3472 0.1724 2.01 0.044 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):LangEN 4.80 5.58 2.98 0.0089 **

s(Time):LangNL 7.74 8.28 12.33 < 2e-16 ***

s(Time):IsTenth 8.93 9.30 8.58 2.4e-13 ***

s(Time):IsNLTenth 4.29 4.77 1.65 0.1630

s(Time,Speaker):Wordtent 217.43 376.00 2.65 < 2e-16 ***

s(Time,Speaker):Wordtenth 256.57 367.00 3.49 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.762 Deviance explained = 77.2%

fREML = -3303.5 Scale est. = 0.18717 n = 12839

For completeness, Figure 21 shows the English difference (i.e. contrast) between ‘tenth’ and
‘tent’ and the non-significant difference comparing the Dutch ‘tenth’-‘tent’ contrast to that of
the English speakers. Corresponding with the binary difference model, both an ordered
factor model and model comparison indicate that this difference is indeed not significant

41

(see supplementary material: m9b.ord, and m9a.bin.ml vs. m9b.bin.ml).
Consequently, the reason that model m9 (including the language difference) was preferred

over model m7 (without the language difference) is due to the difference in how both groups
of speakers pronounce the reference word ‘tent’ (i.e. more anterior for the Dutch speakers,
see the dark, blue lines in Figure 19). This finding also emphasizes the need for modeling
these differences directly, rather than inadequately comparing significance values.
 Of course, given that the minimal pair ‘tenth’-‘tent’ only differs at the end of the
word, we might be reducing the power of our analysis by focusing on the entire time course.
Given that we don’t observe any differences (as would be expected, considering that the
minimal pair only differs at the end) in the first half of the word (see Figure 21, right), we
also conducted the same analysis using only the second half of the word pronunciations (i.e.
from normalized time 0.5 to 1.0). The supplementary material (Section 5.12) indeed shows
that the difference between the Dutch and English speakers in how they contrast ‘tenth’
from ‘tent’ in the second half of the word significantly differs (p = 0.01). Dutch speakers
exhibit a smaller distinction between ‘tenth’ and ‘tent’ than the English speakers, in line
with our expectations. Note that while in this case there is a clear argument for limiting the
analysis to a certain time window, we caution against limiting the time window
(subjectively) in order to identify significant differences when there is not an a priori
reason to do so.

Figure 21. Visualization of the partial effects of model m9b.bin representing the difference between ‘tenth’ and
‘tent’ for the English speakers (left) and how this difference needs to change to obtain the difference between
‘tenth’ and ‘tent’ for the Dutch speakers (right). In both graphs, the pointwise 95%-confidence intervals are
visualized by shaded bands. The pattern on the right is not significant.

4.11 Speeding up computation
For our present small dataset, which only includes 2 words, the most complex models take
about 30 seconds to fit on a single core of a 36-core 2.3 GHz Intel Xeon E5-2699 v3 using
fast restricted maximum likelihood estimation (fitting with maximum likelihood takes
about 7 times as long). However, this dataset only contains about 10,000 rows. Especially, if
we use larger datasets (the full dataset contains more than 100,000 rows, while Wieling et
al., 2016 analyzed a dataset with more than a million rows), computational time will
become rather substantial. While bam is already much faster than gam, it can be made even
faster by taking advantage of the fact that numerical predictors often only have a modest

42

number of unique (rounded) values. Consequently, at the cost of some precision, substantial
reductions in computation time can be achieved. To use this discretization approach, the
bam parameter discrete has to be set to TRUE (the default is FALSE). Together with the
discrete parameter, it is also possible to set the nthreads parameter which controls
the number of cores used in parallel to obtain the model fit (the default value is 1). For
example, model m9b.bin took 17.4 seconds to fit with discrete set to FALSE. When set to

TRUE and using single core, computation time was reduced to 5.3 seconds. Using two
processors instead of one, further reduced the computation time to 5.1 seconds. However,
note that the speed-up using multiple processors is much more substantial when the
models take several hours to fit rather than several seconds. The only restriction for using
discrete, is that the model has to be fit with fast restricted maximum likelihood
estimation and thus model comparison of models differing in the fixed effects is not possible
(but, of course, binary smooths and ordered factors can still be used).
 To see that the model fit with discrete set to TRUE is indeed highly similar to the
model fit with discrete set to FALSE, the summary of m9b.bin.discrete is shown
below and the visualization is shown in Figure 22 (for direct comparison with Figure 21).

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.085 0.119 -0.71 0.476

LangNL 0.358 0.173 2.07 0.039 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):LangEN 4.75 5.52 2.96 0.0084 **

s(Time):LangNL 7.71 8.25 11.96 <2e-16 ***

s(Time):IsTenth 8.93 9.30 9.00 1e-13 ***

s(Time):IsNLTenth 4.32 4.81 1.68 0.1548

s(Time,Speaker):Wordtent 217.08 376.00 2.64 <2e-16 ***

s(Time,Speaker):Wordtenth 255.83 367.00 3.46 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.762 Deviance explained = 77.1%

fREML = -3299.5 Scale est. = 0.18735 n = 12839

43

Figure 22. Visualization of the partial effects of model m9b.bin.discrete representing the difference
between ‘tenth’ and ‘tent’ for the English speakers (left) and how this difference needs to change to obtain the
difference between ‘tenth’ and ‘tent’ for the Dutch speakers (right). In both graphs, the pointwise 95%-
confidence intervals are visualized by shaded bands. The pattern on the right is not significant. Note the
negligible difference from the full precision results shown in Figure 21.

5. Generalized additive modeling: including all words
In Section 4, we have illustrated and explained all separate parts of an appropriate
generalized additive modeling analysis. Now we are ready to create an appropriate model
for all data (dataset full), including the appropriate random-effects structure and a
correction for autocorrelation. An important distinction with respect to the previous models
is that we now seek to generalize over all words. Consequently, Word now becomes a
random-effect factor (i.e. a factor smooth over time), whereas the nominal variable Sound
allows us to distinguish between /θ/-words ("TH") and /t/-words ("T"). We further need
to take into account the location of the contrast (Loc: "Init" vs. "Final"). However, to

keep the models discussed in this section relatively simple, we will restrict our analysis to
words with a word-final contrast and only analyze the pattern in the second half of the
word (cf. Section 4.10, final paragraph; dataset: fullfinal). The supplementary material
(Sections 7 and 8) contains the analysis for both sets of words (i.e. those with a word-final
contrast and those with a word-initial contrast) in a single model. Importantly, the
conclusion on the basis of the full model is similar to that of the simpler model discussed
below.

As we are interested in assessing if Dutch speakers contrast /θ/-words from /t/-
words less strongly than English speakers, we will create a binary smooth model similar to
m9b.bin and therefore fit the following model (the optimal value for rho was determined
to be 0.952; see supplementary material):

ffmc1 <- bam(Pos ~ Lang + s(Time, by=Lang) + s(Time, by=IsTH) +

 s(Time, by=IsNLTH) +

 s(Time,Speaker,by=Sound,bs="fs",m=1) +

 s(Time,Word,by=Lang,bs="fs",m=1),

 data=fullfinal, discrete=TRUE, rho=0.952,

 AR.start=fullfinal$start.event)

44

In this specification, IsTH is equal to 1 for /θ/-words and 0 otherwise. Similarly, IsNLTH
is equal to 1 for /θ/-words pronounced by the Dutch speakers and 0 otherwise. It is easy to
see that this model specification is very similar to that of m9b.bin. The only differences are
that we (1) used IsTH and IsNLTH instead of IsTenth and IsNLTenth, (2) replaced
by=Word with by=Sound in the by-speaker factor smooth specification, and (3) included
an additional factor smooth for the (now) random-effect factor Word, to take into account
the structural variability in tongue movement per word. As words may be pronounced
differently depending on the language group the speaker belongs to, two smooths are
modeled for each word via the by=Lang part of the by-word factor smooth specification.

Fitting this model took about 15 seconds with discrete set to TRUE. The
remaining autocorrelation in this model was comparable to that shown in Figure 14 (see
supplementary material). The model summary shows the following:

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.162 0.269 -0.60 0.55

LangNL 0.137 0.427 0.32 0.75

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):LangEN 3.08 3.49 2.92 0.02745 *

s(Time):LangNL 5.26 5.70 2.53 0.01831 *

s(Time):IsTH 5.45 5.90 4.46 0.00018 ***

s(Time):IsNLTH 2.06 2.09 0.44 0.63448

s(Time,Speaker):SoundT 215.18 376.00 8.33 < 2e-16 ***

s(Time,Speaker):SoundTH 228.45 376.00 15.83 < 2e-16 ***

s(Time,Word):LangEN 70.15 89.00 81.18 < 2e-16 ***

s(Time,Word):LangNL 73.78 89.00 103.67 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.633 Deviance explained = 64%

fREML = -2831.1 Scale est. = 0.6407 n = 31225

Importantly, the line shown in boldface reveals that the difference between the Dutch and
English /θ/-/t/ (word-final) contrast is not significant. In other words, the analysis does not
allow us to reject the null hypothesis outlined in Section 2. Dutch non-native speakers
therefore do not significantly differ from native English speakers in contrasting /θ/ and /t/
in articulation. Figure 23 visualizes the associated binary difference smooths, corroborating
the model summary.

After having fitted the final model, the only remaining issue is to conduct model
criticism. Figure 24 shows the result of gam.check(ffmc1). As these diagnostic graphs
are based on uncorrected residuals (i.e. ignoring the autocorrelation parameter rho), the
scatter plots still show the spaghetti-like patterns indicative of dependencies within the
trajectories (which have, in fact, been corrected). Unfortunately, the left graphs of Figure 24
reveal that the residuals also show a problematic non-normal distribution, which almost
certainly will affect the estimates and p-values of the model. Consequently, this will need to
be addressed as we cannot trust the results of model ffmc1.

45

Figure 23. Difference smooths of model ffmc1 for the words that have a word-final contrast. The left graph
shows the difference between the /θ/-words and /t/-words for the English speakers. The right graph shows
how this difference needs to change to obtain the difference between the /θ/-words and /t/-words for the Dutch
speakers. In all graphs, the pointwise 95%-confidence intervals are visualized by shaded bands. The patterns in
the right graph is (clearly) not significant.

Given that the pattern of the residuals resembles that of a normal distribution with
heavier tails, a sensible approach is to fit the model using the scaled-t family for heavy tailed
data. To do this, only a single parameter needs to be added to the model specification of
ffmc1: family="scat". While this change is very simple, the time needed to fit this type
of model has increased from 15 seconds to almost 7 minutes. Using multiple processors is
beneficial here: using 32 processors reduces the time needed to less than a minute (see the
supplementary material for a more substantial speedup when using the full dataset:
doubling the number of processors divides the running time on average by a factor of about
1.7). Fortunately, the resulting model summary for model ffmc1s, shown below, is
reasonably similar to the Gaussian model (as are the associated patterns; see
supplementary material) and the conclusion on the basis of model ffmc1 still appears to
hold (see line in boldface). Model criticism of the scaled-t model (shown in Figure 25)
shows that the distribution of the residuals now nicely matches the assumed distribution.

46

Figure 24. Diagnostic plots visualizing the distribution of the residuals of model ffmc1 (normal quantile plot:
top-left; histogram: bottom-left) and heteroscedasticity (over time: top-right; over fitted values: bottom-right).
Note that these graphs are based on uncorrected residuals, and therefore ignore the autocorrelation parameter
rho.

Parametric coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.197 0.267 -0.74 0.46

LangNL 0.234 0.412 0.57 0.57

Approximate significance of smooth terms:

 edf Ref.df F p-value

s(Time):LangEN 2.36 2.67 1.53 0.142

s(Time):LangNL 4.94 5.30 2.87 0.013 *

s(Time):IsTH 6.37 6.75 4.81 2.8e-05 ***

s(Time):IsNLTH 3.84 4.17 0.88 0.461

s(Time,Speaker):SoundT 239.60 376.00 2.59 < 2e-16 ***

47

s(Time,Speaker):SoundTH 233.09 376.00 3.59 < 2e-16 ***

s(Time,Word):LangEN 75.22 88.00 17.76 < 2e-16 ***

s(Time,Word):LangNL 78.22 88.00 27.78 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.645 Deviance explained = 53.9%

fREML = 19236 Scale est. = 1 n = 31225

Figure 25. Diagnostic plots visualizing the distribution of the residuals of the scaled-t model ffmc1s (normal
quantile plot: top-left; histogram: bottom-left) and heteroscedasticity (over time: top-right; over fitted values:
bottom-right). Note that these graphs are based on uncorrected residuals, and therefore ignore the
autocorrelation parameter rho.

6 Discussion
In this tutorial, we have explained the use of generalized additive (mixed-effects) modeling
by analyzing an articulatory dataset contrasting the pronunciation of L1 and L2 speakers of
English. With respect to our research question, we have shown that while native English

48

speakers seem to more clearly distinguish /θ/ from /t/, there is insufficient evidence (at
least when analyzing a single sensor in a single dimension) to conclude that the distinction
made by non-native Dutch (highly educated) speakers is different from that of native
English speakers. By using generalized additive modeling, we were able to analyze all
dynamic data, and did not have to average over time or select a specific time point. The
analysis allowed us to assess how the specific non-linear tongue movement patterns varied
depending on the speaker group, while simultaneously taking all dependencies in our data
into account. Wieling et al. (2017) evaluated the acoustic recordings underlying this dataset
and showed that while for Dutch speakers (as opposed to English speakers) /θ/-words (e.g.,
‘tenth’) were significantly more often recognized (by a native Dutch listener) as /t/-words
(e.g., ‘tent’), almost 70% was still correctly recognized (compared to 88% for the native
English speakers). An automatic (British English) speech recognition system confirmed this
pattern of results. Consequently, with respect to prominent speech learning models (Best,
1995; Flege, 1995), Dutch speakers, at least when highly educated, do not appear to have
completely merged the two sounds.

With respect to the actual modeling, we have used the R package mgcv (Wood 2011;
Wood, 2017) for model fitting, and the R package itsadug (van Rij et al., 2017) for
visualizing most of the resulting patterns. We have shown how potentially non-linear
patterns may be modeled by smooths, and that the pre-specified basis dimension limits the
maximum complexity of the smooths. We have further discussed how an informed choice
can be made about how to select the best model given the data. Three approaches were
illustrated: model comparison, using ordered factor difference smooths, and using binary
difference smooths. Model comparison involves fitting two models and requires extensive
computation due to the necessity of fitting using maximum likelihood estimation. By
contrast, the latter two approaches are more efficient, as they evaluate whether the
additional complexity (i.e. the distinction between two groups or categories) is necessary by
directly modeling a difference smooth. The binary difference smooth model evaluates
whether the combined constant and non-linear difference between the two categories is
necessary, whereas the ordered factor difference smooth model separately assesses the
necessity of including the constant and non-linear difference.

We would also like to emphasize that comparing the significance of two smooths
does not allow any conclusion about these patterns being significantly different or not.
Furthermore, while it is essential to visualize the (differences between) smooths in order to
interpret the results, deciding if a more complex model is warranted should also consist of a
more formal assessment (i.e. using one of the three approaches listed above). For example,
while the visualization of the binary difference smooth in Figure 21 (right) might suggest a
significant difference, this was not supported by any of the more formal approaches.

We have also observed how the dependency in subjects and items may be modeled
by including random intercepts, random (linear) slopes, and, most importantly, factor
smooths which are able to model non-linear random effects. In addition, we discussed how
another type of dependency, autocorrelation, may be alleviated via the rho parameter of
the mgcv function bam. Besides modeling one-dimensional patterns, we have modeled two-
dimensional patterns using a tensor product (see Wieling et al., 2014 for a tensor product
involving more than two numerical variables), and we have decomposed the tensor product
into separate smooths for each variable, as well as a separate tensor product interaction.
Finally, we have discussed aspects of model criticism and illustrated an example of fitting a
non-Gaussian scaled-t model. Especially here, discretization and parallelization were
important in reducing computation time to a manageable duration.

While the generalized additive modeling approach is certainly powerful and flexible,
it is not perfect. At present, no correlation structure can be incorporated in the linear
random effects structure, at least not when using the function gam or bam. Consequently, if

49

the patterns in the data are linear, or can be adequately represented by simple polynomials,
it might be preferable to use growth curve analysis (Mirman et al., 2008; Mirman, 2014) or
linear mixed-effects regression modeling via the R lme4 package (see also Winter & Wieling,
2016 for a discussion of both techniques). Furthermore, if heteroscedasticity and
dependencies in the data (e.g., autocorrelation) cannot be adequately coped with, it may be
useful to investigate whether sparse functional linear mixed modeling (Cederbaum et al.,
2016; Pouplier et al., 2017) is a more suitable analysis approach. Unfortunately, sparse
functional linear mixed modeling does not allow for the inclusion of random slopes, which
are almost always necessary.

7 Conclusion
By providing a hands-on approach, together with the original data and all R commands,
readers should be able to replicate the analyses and gain more understanding about the
material at hand. Importantly, other studies employing generalized additive modeling by
Wieling and others have also made their data and code available (e.g., Meulman et al., 2015;
Sóskuthy, 2017; Winter & Wieling, 2016; Wieling et al., 2011, 2014, 2016, 2017), thereby
helping other researchers become familiar with this powerful analysis tool.

Acknowledgments
This work is part of the research program “Improving speech learning models and English
pronunciation with articulography“, which is financed by the Netherlands Organisation for
Scientific Research (NWO) via a Veni grant awarded to Martijn Wieling (grant number 275-
70-039). I am grateful to Mark Tiede and John Nerbonne, as well as two anonymous
reviewers, Martón Sóskuthy and the guest editor Timo B. Roettger for providing comments
which have helped to substantially improve the manuscript. Any mistakes in the manuscript
remain my own.

References
Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on

automatic control, 19(6), 716-723.
Baayen, R. H. (2008). Analyzing Linguistic Data: A Practical Introduction to Statistics Using R.

Cambridge: Cambridge University Press.
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed

random effects for subjects and items. Journal of memory and language, 59(4), 390-
412.

Baayen, H., Vasishth, S., Kliegl, R., & Bates, D. (2017). The cave of shadows: Addressing the
human factor with generalized additive mixed models. Journal of Memory and
Language, 94, 206-234.

Barr, D.J., Levy, R., Scheepers, C., & Tilly, H. J. (2013). Random effects structure for
confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language,
68, 255–278.

Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2014). lme4: Linear mixed-effects models
using Eigen and S4. R package version 1.1-7.

Best, C. T. (1995). A direct realist perspective on cross-language speech perception. In: W.
Strange (Ed.), Speech perception and linguistic experience: Issues in cross-language
research. Timonium, MD: York Press, pp. 171-204.

Cederbaum, J., Pouplier, M., Hoole, P., & Greven, S. (2016). Functional linear mixed models
for irregularly or sparsely sampled data. Statistical Modelling, 16(1), 67-88.

Efron, B., & Morris, C. N. (1977). Stein's paradox in statistics. WH Freeman.

50

Flege, J. (1995). Second-language speech learning: Theory, findings, and problems. In:
Strange, W. (ed), Speech Perception and Linguistic Experience: Issues in Cross-Language
Research, Timonium, MD: York Press, pp. 233-277.

Gubian, M., Torreira, F., & Boves, L. (2015). Using Functional Data Analysis for investigating
multidimensional dynamic phonetic contrasts. Journal of Phonetics, 49, 16-40.

Gurka, M. J., Edwards, L. J., & Muller, K. E. (2011). Avoiding bias in mixed model inference for
fixed effects. Statistics in Medicine, 30(22), 2696-2707.

Hanulíková, A., & Weber, A. (2012). Sink positive: Linguistic experience with th
substitutions influences nonnative word recognition. Attention, Perception, &
Psychophysics, 74(3), 613-629.

Hastie, T., & Tibshirani, R. (1986). Generalized additive models. Statistical science, 1, 297-
310.

Hay, J., Podlubny, R., Drager, K., & McAuliffe, M. (2017). Car-talk: Location-specific speech
production and perception. Journal of Phonetics, 65, 94-109.

Hualde, J. I., Luchkina, T., & Eager, C. D. (2017). Canadian Raising in Chicagoland: The
production and perception of a marginal contrast. Journal of Phonetics, 65, 15-44.

Hübscher, I., Borràs-Comes, J., & Prieto, P. (2017). Prosodic mitigation characterizes Catalan
formal speech: The Frequency Code reassessed. Journal of Phonetics, 65, 145-159.

Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social
psychology: a new and comprehensive solution to a pervasive but largely ignored
problem. Journal of Personality and Social Psychology, 103(1), 54-69.

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error
and power in linear mixed models. Journal of Memory and Language, 94, 305-315.

Meulman, N., Wieling, M., Sprenger, S. A., Stowe, L. A., & Schmid, M. S. (2015). Age effects in
L2 grammar processing as revealed by ERPs and how (not) to study them. PloS
one, 10(12), e0143328.

Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and computational models of the
visual world paradigm: Growth curves and individual differences. Journal of Memory
and Language, 59(4), 475-494.

Mirman D. (2014). Growth Curve Analysis and Visualization Using R. Boca Raton: CRC Press.
Nissen, S. L., Dromey, C., & Wheeler, C. (2007). First and second language tongue movements

in Spanish and Korean bilingual speakers. Phonetica, 64(4), 201-216.
Nixon, J. S., van Rij, J., Mok, P., Baayen, R. H., & Chen, Y. (2016). The temporal dynamics of

perceptual uncertainty: eye movement evidence from Cantonese segment and tone
perception. Journal of Memory and Language, 90, 103-125.

Ots, N. (2017). On the phrase-level function of f0 in Estonian. Journal of Phonetics, 65, 77-93.
Pastätter, M., & Pouplier, M. (2017). Articulatory mechanisms underlying onset-vowel

organization. Journal of Phonetics, 65, 1-14.
Pouplier, M., Cederbaum, J., Hoole, P., Marin, S., & Greven, S. (2017). Mixed modeling for

irregularly sampled and correlated functional data: Speech science applications. The
Journal of the Acoustical Society of America, 142(2), 935-946.

R Core Team (2017). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

Ramsay, J., & Silverman, B. W. (2005). Functional Data Analysis. Second Edition. New York:
Springer Verlag.

Rao, P., Sanghvi, N., Mixdorff, H., & Sabu, K. (2017). Acoustic correlates of focus in Marathi:
Production and perception. Journal of Phonetics, 65, 110-125.

Sóskuthy, M. (2017). Generalised additive mixed models for dynamic analysis in linguistics:
a practical introduction. arXiv:1703.05339 [stat:AP].

Stuart-Smith, J., Lennon, R., Macdonald, R., Robertson, D., Sóskuthy, M., José, B., & Evers, L.
(2015). A dynamic acoustic view of real-time change in word-final liquids in

51

spontaneous glaswegian. Proceedings of the 18th International Congress of Phonetic
Sciences, 10-14 August 2015, Glasgow

Tiede, M. (2005). MVIEW: software for visualization and analysis of concurrently recorded
movement data. New Haven, CT: Haskins Laboratories.

Van der Harst, S., Van de Velde, H., & Van Hout, R. (2014). Variation in Standard Dutch
vowels: The impact of formant measurement methods on identifying the speaker's
regional origin. Language Variation and Change, 26(2), 247-272.

van Rij, J., Wieling, M., Baayen, R., and van Rijn, H. (2017). “itsadug: Interpreting Time Series
and Autocorrelated Data Using GAMMs.” R package version 2.3.

Westers, F., Gilbers, D., & Lowie, W. (2007). Substitution of dental fricatives in English by
Dutch L2 speakers. Language Sciences, 29, 477–491.

Wieling, M., Nerbonne, J., & Baayen, R. H. (2011). Quantitative social dialectology: Explaining
linguistic variation geographically and socially. PLOS ONE, 6(9), e23613.

Wieling, M., Montemagni, S., Nerbonne, J., & Baayen, R. H. (2014). Lexical differences
between Tuscan dialects and standard Italian: Accounting for geographic and socio-
demographic variation using generalized additive mixed modeling. Language, 90(3),
669-692.

Wieling, M., Tomaschek, F., Arnold, D., Tiede, M., Bröker, F., Thiele, S., Wood, S., & Baayen, R.
H. (2016). Investigating dialectal differences using articulography. Journal of
Phonetics, 59, 122-143.

Wieling, M., Veenstra, P., Adank, P., & Tiede, M. (2017). Articulatory differences between L1
and L2 speakers of English. Proceedings of The 11th International Seminar on
Speech Production, Tianjin, China, October 16-19.

Winter, B. (2013). Linear models and linear mixed effects models in R with linguistic
applications. arXiv:1308.5499.

Winter, B. (2015). The other N: the role of repetitions and items in the design of phonetic
experiments. Proceedings of the 18th International Congress of Phonetic Sciences.
Glasgow: The University of Glasgow

Winter, B., & Wieling, M. (2016). How to analyze linguistic change using mixed models,
Growth Curve Analysis and Generalized Additive Modeling. Journal of Language
Evolution, 1(1), 7-18.

Wood, S. (2003). Thin plate regression splines. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 65(1), 95–114.

Wood, S. (2006). Generalized Additive Models: an introduction with R. 1st edition. Boca
Raton: CRC press.

Wood, S. (2011). Fast stable restricted maximum likelihood and marginal likelihood
estimation of semiparametric generalized linear models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 73(1), 3-36.

Wood, S. (2017). Generalized Additive Models: an introduction with R. 2nd edition. Boca
Raton: CRC press.

Yang, J., & Fox, R. A. (2017). L1–L2 interactions of vowel systems in young bilingual
Mandarin-English children. Journal of Phonetics, 65, 60-76.

